cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092489 Arises in enumeration of 321-hexagon-avoiding permutations.

Original entry on oeis.org

0, 0, 1, 4, 14, 48, 165, 568, 1954, 6717, 23082, 79307, 272470, 936065, 3215741, 11047122, 37950140, 130369334, 447853808, 1538496047, 5285135093, 18155807539, 62369881206, 214256590058, 736026444181, 2528439830821
Offset: 1

Views

Author

N. J. A. Sloane, Apr 04 2004

Keywords

Crossrefs

Programs

  • Maple
    b[1]:=1: b[2]:=2: b[3]:=5: b[4]:=14: b[5]:=42: b[6]:=132: for n from 6 to 35 do b[n+1]:=6*b[n]-11*b[n-1]+9*b[n-2]-4*b[n-3]-4*b[n-4]+b[n-5] od: seq(b[n],n=1..35): a[1]:=0: a[2]:=0: for n from 3 to 35 do a[n]:=b[n]-2*b[n-1] od: seq(a[n],n=1..35); # here b[n]=A058094(n).
  • PARI
    concat([0,0], Vec(x^3*(1 - 2*x + x^2 - x^3 - x^4) / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6) + O(x^30))) \\ Colin Barker, Aug 20 2019

Formula

Stankova and West give an explicit recurrence.
a(n) = A058094(n) - A058094(n-1) for n >= 3. - Emeric Deutsch, May 04 2004
From Colin Barker, Aug 20 2019: (Start)
G.f.: x^3*(1 - 2*x + x^2 - x^3 - x^4) / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6).
a(n) = 6*a(n-1) - 11*a(n-2) + 9*a(n-3) - 4*a(n-4) - 4*a(n-5) + a(n-6) for n>7.
(End)

Extensions

More terms from Emeric Deutsch, May 04 2004