A058094
Number of 321-hexagon-avoiding permutations in S_n, i.e., permutations of 1..n with no submatrix equivalent to 321, 56781234, 46781235, 56718234 or 46718235.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 132, 429, 1426, 4806, 16329, 55740, 190787, 654044, 2244153, 7704047, 26455216, 90860572, 312090478, 1072034764, 3682565575, 12650266243, 43456340025, 149282561256, 512821712570, 1761669869321, 6051779569463, 20789398928496, 71416886375493
Offset: 0
Since the Catalan numbers count 321-avoiding permutations in S_n, a(8) = 1430 - 4 = 1426 subtracting the four forbidden hexagon patterns.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- S. C. Billey and G. S. Warrington, Kazhdan-Lusztig Polynomials for 321-hexagon-avoiding permutations, arXiv:math/0005052 [math.CO], 2000; J. Alg. Combinatorics, Vol. 13, No. 2 (March 2001), 111-136, DOI:10.1023/A:1011279130416.
- Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,9,-4,-4,1).
-
a[0]:=1: a[1]:=1: a[2]:=2: a[3]:=5: a[4]:=14: a[5]:=42: for n from 5 to 35 do a[n+1]:=6*a[n]-11*a[n-1]+9*a[n-2]-4*a[n-3]-4*a[n-4]+a[n-5] od: seq(a[n], n=0..35);
-
LinearRecurrence[{6,-11,9,-4,-4,1},{1,2,5,14,42,132},40] (* Harvey P. Dale, Nov 09 2012 *)
A092492
Arises in enumeration of 321-hexagon-avoiding permutations.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 5, 19, 68, 240, 839, 2911, 10054, 34641, 119203, 409893, 1408873, 4841373, 16634350, 57149111, 196333312, 674477710, 2317047808, 7959739375, 27343914410, 93933688630, 322686958885, 1108513737048, 3808031504891
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,9,-4,-4,1).
-
b[1]:=1: b[2]:=2: b[3]:=5: b[4]:=14: b[5]:=42: b[6]:=132: for n from 6 to 45 do b[n+1]:=6*b[n]-11*b[n-1]+9*b[n-2]-4*b[n-3]-4*b[n-4]+b[n-5] od: a[1]:=0: a[2]:=0: a[3]:=0: a[4]:=0: a[5]:=0: for n from 6 to 40 do a[n]:=2*b[n-3]-5*b[n-4]+b[n-5] od: seq(a[n],n=1..40); # Emeric Deutsch, Jun 08 2004
-
LinearRecurrence[{6,-11,9,-4,-4,1},{0,0,0,0,0,1,5},30] (* Harvey P. Dale, Jan 31 2025 *)
-
concat([0,0,0,0,0], Vec(x^6*(1 - x) / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6) + O(x^30))) \\ Colin Barker, Aug 21 2019
Original entry on oeis.org
0, 0, 0, 1, 5, 20, 75, 271, 957, 3337, 11559, 39896, 137423, 472808, 1625632, 5587228, 19198971, 65963978, 226623902, 778551761, 2674604282, 9188106871, 31563807424, 108430368827, 372487292867, 1279591674070, 4395730089428
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,9,-4,-4,1).
-
b[1]:=1:b[2]:=2:b[3]:=5:b[4]:=14:b[5]:=42:b[6]:=132: for n from 6 to 32 do b[n+1]:=6*b[n]-11*b[n-1]+9*b[n-2]-4*b[n-3]-4*b[n-4]+b[n-5] od:a[1]:=0:a[2]:=0:a[3]:=0:for n from 4 to 32 do a[n]:=b[n]-3*b[n-1]+b[n-2] od: seq(a[n],n=1..32); # Emeric Deutsch, Apr 12 2005
-
concat([0,0,0], Vec(x^4*(1 - x + x^2 + x^3) / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6) + O(x^30))) \\ Colin Barker, Aug 21 2019
Original entry on oeis.org
0, 0, 0, 0, 1, 6, 25, 93, 333, 1172, 4083, 14137, 48778, 167981, 577874, 1986747, 6828120, 23462470, 80611581, 276944893, 951422603, 3268470411, 11228209786, 38572124196, 132505812826, 455192771711, 1563706508759, 5371738013650
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,9,-4,-4,1).
-
b[1]:=1:b[2]:=2:b[3]:=5:b[4]:=14:b[5]:=42:b[6]:=132: for n from 6 to 34 do b[n+1]:=6*b[n]-11*b[n-1]+9*b[n-2]-4*b[n-3]-4*b[n-4]+b[n-5] od: a[1]:=0:a[2]:=0:a[3]:=0:a[4]:=0: for n from 5 to 34 do a[n]:=2*b[n-2]-5*b[n-3]+b[n-4]+a[n-1] od: seq(a[n],n=1..34); # Emeric Deutsch, Apr 12 2005
-
LinearRecurrence[{6, -11, 9, -4, -4, 1}, {0, 0, 0, 0, 1, 6}, 40] (* Vincenzo Librandi, Aug 15 2017 *)
-
concat([0,0,0,0], Vec(x^5 / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6) + O(x^30))) \\ Colin Barker, Aug 21 2019
A092493
a(n) = 4a(n-1) - 4a(n-2) + 3a(n-3) + a(n-4) - a(n-5).
Original entry on oeis.org
1, 2, 5, 14, 42, 128, 389, 1179, 3572, 10825, 32810, 99446, 301412, 913547, 2768863, 8392136, 25435699, 77092976, 233660832, 708201794, 2146486339, 6505777953, 19718339694, 59764246943, 181139247400, 549014312524, 1664005563066
Offset: 1
- Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,3,1,-1).
-
a[1]:=1: a[2]:=2: a[3]:=5: a[4]:=14: a[5]:=42: for n from 6 to 32 do a[n]:=4*a[n-1]-4*a[n-2]+3*a[n-3]+a[n-4]-a[n-5] od: seq(a[j],j=1..32); # Emeric Deutsch, Apr 12 2005
-
LinearRecurrence[{4,-4,3,1,-1},{1,2,5,14,42},40] (* Harvey P. Dale, Jul 14 2024 *)
Showing 1-5 of 5 results.
Comments