A092492 Arises in enumeration of 321-hexagon-avoiding permutations.
0, 0, 0, 0, 0, 1, 5, 19, 68, 240, 839, 2911, 10054, 34641, 119203, 409893, 1408873, 4841373, 16634350, 57149111, 196333312, 674477710, 2317047808, 7959739375, 27343914410, 93933688630, 322686958885, 1108513737048, 3808031504891
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Z. Stankova and J. West, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280 (2004), 165-189.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,9,-4,-4,1).
Programs
-
Maple
b[1]:=1: b[2]:=2: b[3]:=5: b[4]:=14: b[5]:=42: b[6]:=132: for n from 6 to 45 do b[n+1]:=6*b[n]-11*b[n-1]+9*b[n-2]-4*b[n-3]-4*b[n-4]+b[n-5] od: a[1]:=0: a[2]:=0: a[3]:=0: a[4]:=0: a[5]:=0: for n from 6 to 40 do a[n]:=2*b[n-3]-5*b[n-4]+b[n-5] od: seq(a[n],n=1..40); # Emeric Deutsch, Jun 08 2004
-
Mathematica
LinearRecurrence[{6,-11,9,-4,-4,1},{0,0,0,0,0,1,5},30] (* Harvey P. Dale, Jan 31 2025 *)
-
PARI
concat([0,0,0,0,0], Vec(x^6*(1 - x) / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6) + O(x^30))) \\ Colin Barker, Aug 21 2019
Formula
From Colin Barker, Aug 21 2019: (Start)
G.f.: x^6*(1 - x) / (1 - 6*x + 11*x^2 - 9*x^3 + 4*x^4 + 4*x^5 - x^6).
a(n) = 6*a(n-1) - 11*a(n-2) + 9*a(n-3) - 4*a(n-4) - 4*a(n-5) + a(n-6) for n>7.
(End)
Extensions
More terms from Emeric Deutsch, Jun 08 2004