A092529 Primes p such that both the digit sum of p plus p and the digit product of p plus p are also primes.
163, 233, 293, 431, 499, 563, 617, 743, 1423, 1483, 1489, 1867, 2273, 2543, 2633, 3449, 4211, 4217, 4273, 4547, 4729, 5861, 6121, 6529, 6637, 6653, 6761, 6857, 6949, 7681, 8273, 8431, 8837, 8839, 9649, 9689
Offset: 1
Examples
a(2) = 233: 233+(2+3+3) = 233+8 = 241, which is prime. 233+(2*3*3) = 233+18 = 251, which is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(p) local L; if not isprime(p) then return false fi; L:= convert(p,base,10); if member(0,L) then return false fi; isprime(p + convert(L,`+`)) and isprime(p + convert(L,`*`)) end proc: select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Feb 20 2024
-
Mathematica
pppQ[n_]:=Module[{idn=IntegerDigits[n]},!MemberQ[idn,0]&&And@@PrimeQ[ {n+ Total[idn], n+Times@@idn}]]; Select[Prime[Range[1200]],pppQ] (* Harvey P. Dale, May 25 2013 *)
Extensions
More terms from Robert G. Wilson v, Apr 10 2004
Comments