A092580
Triangle read by rows: T(n,k) is the number of permutations p of [n] in which exactly the first k terms satisfy the up-down property, i.e., p(1)p(3), p(3)
1, 1, 1, 3, 1, 2, 12, 4, 3, 5, 60, 20, 15, 9, 16, 360, 120, 90, 54, 35, 61, 2520, 840, 630, 378, 245, 155, 272, 20160, 6720, 5040, 3024, 1960, 1240, 791, 1385, 181440, 60480, 45360, 27216, 17640, 11160, 7119, 4529, 7936, 1814400, 604800, 453600, 272160, 176400, 111600, 71190, 45290, 28839, 50521
Offset: 1
Examples
T(4,3)=3 because 1432, 2431, 3421 are the only permutations of [4] in which exactly the first 3 entries satisfy the up-down property. Triangle starts: 1; 1, 1; 3, 1, 2; 12, 4, 3, 5; 60, 20, 15, 9, 16; 360, 120, 90, 54, 35, 61; ...
Links
- Alois P. Heinz, Rows n = 1..150, flattened
- E. Deutsch and W. P. Johnson, Create your own permutation statistics, Math. Mag., 77, 130-134, 2004.
Programs
-
Maple
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u)) end: E:= n-> b(n, 0): T:= (n, k)-> `if`(n=k, E(n), n!*((k+1)*E(k)-E(k+1))/(k+1)!): seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 12 2016
-
Mathematica
b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[o - 1 + j, u - j], {j, 1, u}]]; e[n_] := b[n, 0]; T[n_, k_] := If[n == k, e[n], n!*((k + 1)*e[k] - e[k + 1])/(k + 1)!]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
Formula
T(n, k) = n!*[(k+1)*E(k)-E(k+1)]/(k+1)! for k=0} [E(n)x^n/n!] (i.e., E(n) = A000111(n)).
Sum_{k=0..n} (k+1) * T(n,k) = A230960(n). - Alois P. Heinz, Apr 27 2023
Comments