cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092588 Numbers k such that sigma(phi(k)) - phi(sigma(k)) is nonzero and divisible by sigma(k), that is A065395(k)/A000203(k) is a nonzero integer.

Original entry on oeis.org

7, 327, 463, 497, 617, 691, 751, 1207, 1633, 2451, 2643, 3143, 3337, 3503, 4939, 5609, 7093, 7597, 10327, 14987, 20427, 21103, 22345, 22481, 24739, 26491, 27193, 28077, 37753, 37915, 42711, 42717, 47647, 48043, 49243, 50071, 51727, 54823, 57478
Offset: 1

Views

Author

Labos Elemer, Mar 01 2004

Keywords

Examples

			(sigma(phi(x))-phi(sigma(x)))/sigma(x) quotient equals 1 for x=7, 2 for x=327, 3 for x=5609.
		

Crossrefs

Programs

  • Mathematica
    fs[x_] := EulerPhi[DivisorSigma[1, x]] sf[x_] := DivisorSigma[1, EulerPhi[x]] {t=Table[0, {100}], j=1}; Do[s=(sf[n]-fs[n])/DivisorSigma[1, n]; If[ !Equal[s, 0]&&IntegerQ[s], Print[n];t[[j]]=n;j=j+1], {n, 2, 1000000}] t
  • PARI
    is(n)=my(s=sigma(n),t=sigma(eulerphi(n))-eulerphi(s)); t && t%s==0 \\ Charles R Greathouse IV, Feb 14 2013