cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092623 Primes with exactly three prime digits.

Original entry on oeis.org

223, 227, 233, 257, 277, 337, 353, 373, 523, 557, 577, 727, 733, 757, 773, 1223, 1237, 1277, 1327, 1373, 1523, 1553, 1723, 1733, 1753, 1777, 2027, 2053, 2137, 2153, 2203, 2207, 2213, 2221, 2239, 2243, 2251, 2267, 2287, 2293, 2297, 2339, 2347, 2351, 2371
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Examples

			223 is prime and it has three prime digits 2,2,3;
1237 is prime and it has three prime digits 2,3,7;
		

Crossrefs

Programs

  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_prnt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stpf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_prnt(5000);
  • Mathematica
    Select[Prime[Range[400]],Count[IntegerDigits[#],?PrimeQ]==3&] (* _Harvey P. Dale, Dec 27 2011 *)

Formula

a(n) >> x^1.285