cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092628 Primes with exactly three nonprime digits.

Original entry on oeis.org

101, 109, 149, 181, 191, 199, 401, 409, 419, 449, 461, 491, 499, 601, 619, 641, 661, 691, 809, 811, 881, 911, 919, 941, 991, 1013, 1021, 1031, 1039, 1051, 1063, 1087, 1093, 1097, 1103, 1117, 1129, 1151, 1163, 1171, 1187, 1193, 1201, 1249, 1289, 1291
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Examples

			101 is prime and it has three nonprime digits, 0 and twice 1;
4261 is prime and it has three nonprime digits, 1, 4 and 6.
		

Crossrefs

Programs

  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: ts_pr_neprnt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stnepf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_neprnt(5000);
  • Mathematica
    dgQ[n_]:=Count[IntegerDigits[n],?(!PrimeQ[#]&)]==3; Select[Prime[ Range[300]], dgQ] (* _Harvey P. Dale, Oct 11 2011 *)