A092628 Primes with exactly three nonprime digits.
101, 109, 149, 181, 191, 199, 401, 409, 419, 449, 461, 491, 499, 601, 619, 641, 661, 691, 809, 811, 881, 911, 919, 941, 991, 1013, 1021, 1031, 1039, 1051, 1063, 1087, 1093, 1097, 1103, 1117, 1129, 1151, 1163, 1171, 1187, 1193, 1201, 1249, 1289, 1291
Offset: 1
Examples
101 is prime and it has three nonprime digits, 0 and twice 1; 4261 is prime and it has three nonprime digits, 1, 4 and 6.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: ts_pr_neprnt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stnepf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_neprnt(5000);
-
Mathematica
dgQ[n_]:=Count[IntegerDigits[n],?(!PrimeQ[#]&)]==3; Select[Prime[ Range[300]], dgQ] (* _Harvey P. Dale, Oct 11 2011 *)