cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092629 Numbers that have a nonprime number of prime digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 29, 30, 31, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Examples

			24 has one prime digit 2 and their number 1 is nonprime;
235719 has four prime digits 2,3,5,7 and their number 4 is nonprime.
313 is not in the sequence as it has a prime number (2) of prime digits (3, 3). - _David A. Corneth_, Aug 09 2023
		

Crossrefs

Cf. A019546.

Programs

  • Maple
    stev_sez:=proc(n) local i, tren, st, ans,anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_nepr:=proc(n) local i, stpf, ans, ans1; ans:=[ ]: stpf:=0: for i from 1 to n do if (isprime( ts_stpf(i) )='false') then ans:=[ op(ans), i ]: fi od; RETURN(ans) end: ts_nepr(600);
  • Mathematica
    Select[Range[100],!PrimeQ[Count[IntegerDigits[#],?PrimeQ]]&] (* _Harvey P. Dale, Jan 15 2013 *)

Extensions

Edited by Charles R Greathouse IV, Aug 03 2010