A092683 Triangle, read by rows, such that the convolution of each row with {1,1} produces a triangle which, when flattened, equals this flattened form of the original triangle.
1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 6, 5, 5, 3, 6, 11, 10, 8, 9, 6, 11, 21, 18, 17, 15, 17, 11, 21, 39, 35, 32, 32, 28, 32, 21, 39, 74, 67, 64, 60, 60, 53, 60, 39, 74, 141, 131, 124, 120, 113, 113, 99, 113, 74, 141, 272, 255, 244, 233, 226, 212, 212, 187, 215, 141, 272, 527, 499
Offset: 0
Examples
Rows begin: 1; 1, 1; 2, 1, 2; 3, 3, 2, 3; 6, 5, 5, 3, 6; 11, 10, 8, 9, 6, 11; 21, 18, 17, 15, 17, 11, 21; 39, 35, 32, 32, 28, 32, 21, 39; 74, 67, 64, 60, 60, 53, 60, 39, 74; 141, 131, 124, 120, 113, 113, 99, 113, 74, 141; 272, 255, 244, 233, 226, 212, 212, 187, 215, 141, 272; 527, 499, 477, 459, 438, 424, 399, 402, 356, 413, 272, 527; 1026, 976, 936, 897, 862, 823, 801, 758, 769, 685, 799, 527, 1026; ... The convolution of each row with {1,1} gives the triangle: 1, 1; 1, 2, 1; 2, 3, 3, 2; 3, 6, 5, 5, 3; 6, 11, 10, 8, 9, 6; 11, 21, 18, 17, 15, 17, 11; 21, 39, 35, 32, 32, 28, 32, 21; 39, 74, 67, 64, 60, 60, 53, 60, 39; ... which, when flattened, equals the original triangle in flattened form.
Links
Programs
-
PARI
T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,1, if(k==n,T(n,0), T(n-1,k)+T(n-1,k+1))))) for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
-
PARI
/* Generate Triangle by G.F. where F=1+x: */ {T(n,k)=local(A,F=1+x,d=1,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
Formula
T(n, k) = T(n-1, k) + T(n-1, k+1) for 0<=k
G.f.: A(x,y) = ( x*H(x) - y*H(x*y) )/( x*(1+y) - y ), where H(x) satisfies: H(x) = H(x^2/(1-x))/(1-x) and H(x) is the g.f. of column 0 (A092684). - Paul D. Hanna, Jul 17 2006
Comments