A092685 Row sums of triangle A092683, in which the convolution of each row with {1,1} produces a triangle that, when flattened, equals the flattened form of A092683.
1, 2, 5, 11, 25, 55, 120, 258, 551, 1169, 2469, 5193, 10885, 22746, 47404, 98553, 204443, 423259, 874680, 1804556, 3717348, 7647075, 15711194, 32242013, 66096274, 135366764, 276988466, 566312984, 1156974619, 2362043602
Offset: 0
Keywords
Programs
-
PARI
{T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,1, if(k==n,T(n,0), T(n-1,k)+T(n-1,k+1)))))} a(n)=sum(k=0,n,T(n,k))
-
PARI
{a(n)=local(A,F=1+x,d=1,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); sum(k=0,2*n,polcoeff(polcoeff(A,n,x),k,y))} \\ Paul D. Hanna, Jul 17 2006
Formula
G.f.: A(x,y) = H(x)*(1-x)/(1-2*x), where H(x) satisfies: H(x) = H(x^2/(1-x))/(1-x) and H(x) is the g.f. of A092684. - Paul D. Hanna, Jul 17 2006