A092686 Triangle, read by rows, such that the convolution of each row with {1,2} produces a triangle which, when flattened, equals this flattened form of the original triangle.
1, 2, 2, 6, 4, 6, 16, 14, 12, 16, 46, 40, 40, 32, 46, 132, 120, 112, 110, 92, 132, 384, 352, 334, 312, 316, 264, 384, 1120, 1038, 980, 940, 896, 912, 768, 1120, 3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278, 9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758
Offset: 0
Examples
Rows begin: 1; 2, 2; 6, 4, 6; 16, 14, 12, 16; 46, 40, 40, 32, 46; 132, 120, 112, 110, 92, 132; 384, 352, 334, 312, 316, 264, 384; 1120, 1038, 980, 940, 896, 912, 768, 1120; 3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278; 9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758, 6556, 9612; 28236, 26600, 25408, 24512, 23840, 23232, 22862, 22072, 22724, 19224, 28236; ... Convolution of each row with {1,2} results in the triangle: 1, 2; 2, 6, 4; 6, 16, 14, 12; 16, 46, 40, 40, 32; 46, 132, 120, 112, 110, 92; 132, 384, 352, 334, 312, 316, 264; 384, 1120, 1038, 980, 940, 896, 912, 768; ... which, when flattened, equals the original triangle in flattened form.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..495
Programs
-
PARI
T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1))))) for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
-
PARI
/* Generate Triangle by the G.F.: */ {T(n,k)=local(A,F=1+2*x,d=1,G=x,H=1+2*x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
Formula
T(n, k) = 2*T(n-1, k) + T(n-1, k+1) for 0<=k
G.f.: A(x,y) = ( x*H(x) - y*H(x*y) )/( x*(1+2y) - y ), where H(x) satisfies: H(x) = H(x^2/(1-2x))/(1-2x) and H(x) is the g.f. of column 0 (A092687). - Paul D. Hanna, Jul 17 2006
Comments