A109712 UnitarySigmaUnitaryPhi(n) or USUP(n).
1, 3, 2, 5, 4, 6, 6, 9, 8, 12, 10, 10, 12, 18, 8, 17, 16, 24, 18, 20, 12, 30, 22, 18, 24, 36, 26, 30, 28, 24, 30, 33, 20, 48, 24, 40, 36, 54, 24, 36, 40, 36, 42, 50, 32, 66, 46, 34, 48, 72, 32, 60, 52, 78, 40, 54, 36, 84, 58, 40, 60, 90, 48, 65, 48, 60, 66, 80, 44, 72, 70, 72, 72, 108, 48, 90, 60, 72, 78, 68
Offset: 1
A092788 USUP perfect numbers.
1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2
Offset: 1
Keywords
Comments
USUP stands for UnitarySigmaUnitaryPhi(n) = A109712(n).
Crossrefs
Cf. A092760.
Formula
Extensions
Adapted to match A092760. - R. J. Mathar, Sep 04 2018
A093863 Unitary sigma-unitary phi super perfect numbers: USUP(USUP(n))= n/k for some integer k.
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 34, 36, 40, 48, 68, 72, 80, 136, 144, 256, 257, 272, 514, 768, 1028, 1280, 2056, 2304, 2808, 4112, 4320, 4352, 20280, 65536, 65537, 65792, 88704, 131074, 196416, 196608, 262148, 327680, 524296, 589824, 998400
Offset: 1
Keywords
Comments
USUP(.)= A109712(.). Where k values are 1, they define fixed points of the function USUP(USUP(n)). k values larger than 1 exist, for example USUP(USUP(4320))= 4320/2.
k = 2 for 4320, 20280, 88704, 196416, 998400, ... - Amiram Eldar, Mar 01 2019
Programs
-
Maple
for n from 1 to 20000 do if n mod A109712(A109712(n)) = 0 then printf("%d,",n); end if; end do:
-
Mathematica
usigma[1]=1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); A047994[n_] := Times @@ (Power @@@ FactorInteger[n] - 1); A006519[n_] := 2^IntegerExponent[ n, 2]; usup[1] = 1; usup[n_ /; IntegerQ[Log[2, n]]] := n+1; usup[n_] := usigma[ A006519[n] ]*A047994[ n/A006519[n] ]; aQ[n_]:=Divisible[n,usup[usup[n]]]; Select[Range[10000], aQ] (* Amiram Eldar, Mar 01 2019 after Jean-François Alcover at A109712 *)
Extensions
More terms from Amiram Eldar, Mar 01 2019
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula