cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A270369 Expansion of g.f. (1-7*x)/(1-9*x).

Original entry on oeis.org

1, 2, 18, 162, 1458, 13122, 118098, 1062882, 9565938, 86093442, 774840978, 6973568802, 62762119218, 564859072962, 5083731656658, 45753584909922, 411782264189298, 3706040377703682, 33354363399333138, 300189270593998242, 2701703435345984178, 24315330918113857602, 218837978263024718418
Offset: 0

Views

Author

Colin Barker, Mar 18 2016

Keywords

Crossrefs

Cf. A001019 (powers of 9), A054879 (partial sums), A132025.
Cf. similar sequences with g.f. (1-k*x)/(1-9*x) and k=0..8: A001019 (k=0; k=8 gives two initial 1's ), A055275 (k=1), A270472 (k=2), A092810 (k=3), A067403 (k=4), A270473 (k=5), A102518 (k=6), this sequence (k=7).

Programs

  • Mathematica
    CoefficientList[Series[(1-7x)/(1-9x),{x,0,20}],x] (* or *) Join[ {1}, NestList[9#&,2,20]] (* Harvey P. Dale, Oct 15 2017 *)
  • PARI
    Vec((1-7*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-7*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 2*9^(n-1) for n>0.
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 25/16.
Sum_{n>=0} (-1)^n/a(n) = 11/20.
Product_{n>=1} (1 - 1/a(n)) = A132025. (End)
E.g.f.: (2*exp(9*x) + 7)/9. - Elmo R. Oliveira, Mar 25 2025

A270472 Expansion of g.f. (1-2*x)/(1-9*x).

Original entry on oeis.org

1, 7, 63, 567, 5103, 45927, 413343, 3720087, 33480783, 301327047, 2711943423, 24407490807, 219667417263, 1977006755367, 17793060798303, 160137547184727, 1441237924662543, 12971141321962887, 116740271897665983, 1050662447078993847, 9455962023710944623, 85103658213398501607
Offset: 0

Views

Author

Colin Barker, Mar 17 2016

Keywords

Crossrefs

Cf. A001019 (powers of 9), A005032, A187709 (partial sums).
Cf. A055275: (1-x)/(1-9*x); A092810: (1-3*x)/(1-9*x).

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x)/(1 - 9 x), {x, 0, 20}], x] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    Vec((1-2*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-2*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 7*9^(n-1) for n>0.
a(n) = A005032(2*n-2). - R. J. Mathar, Jan 28 2025
E.g.f.: (7*exp(9*x) + 2)/9. - Elmo R. Oliveira, Mar 25 2025

A355581 Exponentially-odd 3-smooth numbers: number of the form 2^i * 3^j where i and j are either 0 or odd.

Original entry on oeis.org

1, 2, 3, 6, 8, 24, 27, 32, 54, 96, 128, 216, 243, 384, 486, 512, 864, 1536, 1944, 2048, 2187, 3456, 4374, 6144, 7776, 8192, 13824, 17496, 19683, 24576, 31104, 32768, 39366, 55296, 69984, 98304, 124416, 131072, 157464, 177147, 221184, 279936, 354294, 393216, 497664
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Examples

			6 is a term since 6 = 2^1 * 3^1 and the exponents of 2 and 3 are both odd: 1.
24 is a term since 24 = 2^3 * 3^1 and the exponents of 2 and 3 are both odd: 3 and 1, respectively.
		

Crossrefs

Intersection of A003586 and A268335.
Subsequences: A002023, A013711, A092810.
Cf. A355580.

Programs

  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, {2, 3}]}, (e[[1]] == 0 || OddQ[e[[1]]]) && (e[[2]] == 0 || OddQ[e[[2]]]) && Times@@({2, 3}^e) == n]; Select[Range[500000], q]
  • PARI
    is(n) = {my(e2 = valuation(n, 2), e3 = valuation(n, 3)); (e2 == 0 || e2%2) && (e3 == 0 || e3%2) && n == 2^e2 * 3^e3};
    
  • Python
    from itertools import count, takewhile
    def aupto(lim):
        pows2 = list(takewhile(lambda x: xMichael S. Branicky, Jul 08 2022

Formula

Sum_{n>=1} 1/a(n) = 55/24.
Showing 1-3 of 3 results.