A092846 a(n) = 100...001^n, where there are just enough zeros for the result to display the terms in the n-th row of Pascal's triangle.
1, 11, 121, 1331, 14641, 10510100501, 1061520150601, 107213535210701, 10828567056280801, 1009036084126126084036009001, 1010045120210252210120045010001, 1011055165330462462330165055011001, 1012066220495792924792495220066012001
Offset: 0
Examples
a(0)=11^0 a(1)=11^1 a(2)=11^2 a(3)=11^3 a(4)=11^4 a(5)=101^5 a(6)=101^6 a(7)=101^7 a(8)=101^8 a(9)=1001^9 a(10)=1001^10 a(11)=1001^11
Links
- Eric M. Schmidt, Table of n, a(n) for n = 0..50
Programs
-
Sage
def A092846(n) : return (10^binomial(n, n//2).ndigits()+1)^n # Eric M. Schmidt, Apr 04 2014
Formula
a(n) = (10^k + 1)^n, where k is the number of digits in A001405(n). - Eric M. Schmidt, Apr 04 2014