cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092912 Numbers k all of whose divisors contain only digits that occur at least once in k.

Original entry on oeis.org

1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 187, 191, 193, 197, 199, 211, 241, 251, 271, 281, 311, 313, 317, 331, 341, 401, 419, 421, 431, 451, 461, 491, 521, 541, 571
Offset: 1

Views

Author

Amarnath Murthy, Mar 14 2004

Keywords

Comments

All primes containing the digit 1 are terms.

Examples

			131 is a term. 143 is also a term with divisors 1,11,13,143.
		

Crossrefs

Programs

  • Maple
    isA092912 := proc(n) local digs, divs, d,i,j ; digs := convert(n,base,10) ; divs := numtheory[divisors](n) ; for i from 1 to nops(divs) do d := convert(op(i,divs),base,10) ; for j in d do if not j in digs then RETURN(false) ; fi ; od ; od ; RETURN(true) ; end: for n from 1 to 700 do if isA092912(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jul 26 2007
  • Mathematica
    Do[a = IntegerDigits[n]; b = Union @@ IntegerDigits[Divisors[n]]; If[Intersection[a, b] == b, Print[n]], {n, 1, 200}] (* Ryan Propper, Jul 19 2005 *)
  • PARI
    is_A092912(n)=!setminus(Set(concat(apply(digits,divisors(n)))),Set(digits(n))) \\ M. F. Hasler, Mar 09 2014

Extensions

Corrected and extended by Ryan Propper, Jul 19 2005
More terms from R. J. Mathar, Jul 26 2007