A092920 Number of strongly monotone partitions of [n].
1, 1, 2, 4, 9, 22, 58, 164, 496, 1601, 5502, 20075, 77531, 315947, 1354279, 6087421, 28611385, 140239297, 715116827, 3785445032, 20760746393, 117759236340, 689745339984, 4165874930885, 25911148634728, 165775085602106, 1089773992530717, 7353740136527305
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- A. Claesson and T. Mansour, Enumerating permutations avoiding a pair of Babson-Steingrimsson patterns, arXiv:math/0107044 [math.CO], 2001-2010.
Programs
-
Maple
G:=1/(1-x-x^2/(1-x-x^2/(1-2*x-x^2/(1-3*x-x^2/(1-4*x-x^2/(1-5*x-x^2/(1-6*x-x^2/(1-7*x-x^2/(1-8*x-x^2/(1-9*x-x^2/(1-10*x-x^2/(1-11*x-x^2/(1-12*x-x^2/(1-13*x-x^2/(1-14*x-x^2/(1-15*x-x^2/(1-16*x-x^2/(1-17*x-x^2)))))))))))))))))): Gser:=series(G,x=0,32): seq(coeff(Gser, x, n), n=0..28); # Emeric Deutsch, Apr 13 2005
-
Mathematica
terms = 26; f[1] = 1; f[k_ /; k>1] = -x^2; g[1] = 1-x; g[k_ /; k>1] := 1-(k-1)x; A[x_] = ContinuedFractionK[f[k], g[k], {k, 1, Ceiling[terms/2]}]; CoefficientList[A[x] + O[x]^terms, x] (* Jean-François Alcover, Aug 07 2018 *)
Formula
G.f.: Sum_{n>=0} a(n)*x^n = 1/(1-x-x^2/(1-x-x^2/(1-2*x-x^2/(1-3*x-x^2/...)))) = 1/(1-x-x^2*B(x)) where B(x) is g.f. for the Bessel numbers A006789.
a(n) = leftmost column terms of M^n*V, where M = an infinite tridiagonal matrix with all 1's in the super and subdiagonals and (1,1,2,3,4,5,...) as the main diagonal; and the rest zeros. V = vector [1,0,0,0,...]. - Gary W. Adamson, Jun 16 2011
G.f.: 1/Q(0) where Q(k) = 1-x*(k+2)+x/(1+x/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 17 2013
Conjecture: a(n) = Sum_{k=0..2^(n-1) - 1} b(k) for n > 0 with a(0) = 1 where b(2^m*(2n+1)) = Sum_{k=0..[m > 0]*(m-1)} binomial(m-1, k)*b(2^k*n) for m >= 0, n >= 0 with b(0) = 1. - Mikhail Kurkov, Apr 24 2023
Extensions
More terms from Emeric Deutsch, Apr 13 2005
Comments