A092937 Differences nextprime(2k) - precprime(2k) having maximum prime density for 2k <= 10^n.
6, 6, 6, 6, 12, 18, 18, 30
Offset: 2
Examples
For n = 3, we have the difference between nextprime and precprime for 2k <= 10^3: 2k | occurrences ----------------- 2 | 35 4 | 80 6 | 132 8 | 60 10 | 80 12 | 44 14 | 49 16 | 0 18 | 9 20 | 10 6 occurs 132 times in the differences for 2k <= 10^3. Thus 6 has the maximum number of occurrences and is the second entry in the table. So a(3) = 6.
Crossrefs
Cf. A060267.
Programs
-
PARI
prmppr(n) = { mx=0; f = vector(floor(sqrt(n)+2)); forstep(x=4,n,2,y=nextprime(x)-precprime(x); print1(y","); if(y>mx,mx=y); f[y]++; ); print(); mx2=0; forstep(x=2,mx,2, if(f[x] > mx2,mx2=f[x];d=x); print(x","f[x]); ); print(d","mx2) } \\ use prmppr(1000) to get a(3)=6
-
PARI
f(n) = nextprime(2*n+1) - precprime(2*n-1); \\ A060267 a(n) = {my(v=vector(10^n/2-1, k, f(k+1))); my(nbm = 0, imax = 0); forstep (i=vecmin(v), vecmax(v), 2, my(nb = #select(x->(x==i), v)); if (nb > nbm, nbm = nb; imax = i);); imax;} \\ Michel Marcus, Sep 16 2020
Extensions
Edited by Michel Marcus, Sep 16 2020
Comments