A092938 a(n) = least prime p such that 2*prime(n) - p is prime.
2, 3, 3, 3, 3, 3, 3, 7, 3, 5, 3, 3, 3, 3, 5, 3, 5, 13, 3, 3, 7, 7, 3, 5, 3, 3, 7, 3, 7, 3, 3, 5, 3, 7, 5, 19, 3, 13, 3, 29, 5, 3, 3, 3, 5, 19, 3, 3, 5, 19, 3, 11, 3, 3, 5, 3, 17, 19, 7, 5, 3, 17, 7, 3, 7, 3, 3, 13, 3, 7, 5, 17, 7, 3, 7, 5, 5, 7, 5, 7, 11, 3, 3, 3, 19, 3, 11, 3, 3, 7, 5, 5, 3, 5, 7, 23, 5, 3
Offset: 1
Keywords
Examples
2*prime(8) = 38; 38 - 2 = 36, 38 - 3 = 35, 38 - 5 = 33 are composite, but 38 - 7 = 31 is prime. Hence a(8) = 7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local pn,p; pn:= ithprime(n); p:= 1; do p:= nextprime(p); if isprime(2*pn-p) then return p fi od end proc: map(f, [$1..100]); # Robert Israel, Jul 31 2020
-
Mathematica
a[n_] := Module[{p, q = Prime[n]}, For[p = 2, True, p = NextPrime[p], If[PrimeQ[2q-p], Return[p]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 07 2023 *)
-
PARI
{for(n=1, 98, k=2*prime(n); p=2; while(!isprime(k-p), p=nextprime(p+1)); print1(p,","))} \\ Klaus Brockhaus, Dec 23 2006
Extensions
Edited and extended by Klaus Brockhaus, Dec 23 2006
Comments