cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A092991 Least product of the parts of the partitions of n where that product has the maximum number of divisors.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 6, 12, 12, 24, 36, 48, 60, 60, 120, 180, 240, 360, 360, 720, 1080, 1440, 2160, 2880, 2520, 6480, 5040, 7560, 10080, 15120, 20160, 30240, 45360, 60480, 75600, 120960, 151200, 226800, 302400, 453600, 604800, 907200, 1209600, 1814400
Offset: 0

Views

Author

Amarnath Murthy, Mar 28 2004

Keywords

Comments

Let P be the set of all products of partitions of n and t = max_{m in P} tau(m). Then a(n) = min_{m in P and tau(m) = t} m. Note that the sequence is not monotonic; the first decrease is a(26) = 5040 < 6480 = a(25) and the second is a(49) = 3326400 < 10886400 = a(48). - Franklin T. Adams-Watters, Jun 14 2006
All terms are in A025487. - David A. Corneth, Apr 30 2024

Examples

			a(9) = 24 corresponding to the partition (2,2,2,3).
a(8) = 12 corresponding to the partition (1,3,4). Another partition (3,3,2) gives a product 18 with same number of divisors 6 but 18>12 hence a(8) = 12.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{t = Transpose[{t = Times @@@ IntegerPartitions[n], DivisorSigma[0, t]}]}, MaximalBy[SortBy[t, Last], Last, 1][[1, 1]]]; Array[a, 50, 0] (* Amiram Eldar, Apr 13 2024 *)

Extensions

Corrected and extended by Franklin T. Adams-Watters, Jun 14 2006
Showing 1-1 of 1 results.