A093000 Least k such that Sum_{r=n+1..k} r >= n!.
2, 3, 5, 8, 16, 38, 101, 284, 852, 2694, 8935, 30952, 111598, 417560, 1617204, 6468816, 26671611, 113158064, 493244565, 2205856753, 10108505545, 47413093714, 227385209453, 1113955476429, 5569777382146, 28400403557929
Offset: 1
Examples
a(4) = 8 because 4! = 24 and 5+6+7+8 = 26 > 24, but 5+6+7 = 18. a(5) = 16 because 5! = 120 and 6+7+8+...+15+16 = 121 > 120.
Crossrefs
Cf. A093001.
Programs
-
PARI
{ for(n=1,20, s=0; found=0; for(k=n+1,10000000, if( k*(k+1)-n*(n+1)>= 2*n!, print1(k,","); found=1; break; ); ); if(found==0, print(0); ); ); } \\ R. J. Mathar, Apr 21 2006
Formula
Least k such that {k(k+1)/2 - n(n+1)/2} >= n!.
a(n) = ceiling((-1 + sqrt(1 + 8n! + 4n^2 + 4n))/2) and ignoring the -1 outside the sqrt and the 1 inside gives the approximate formula in the comment. - Joshua Zucker, May 08 2006
Extensions
More terms from R. J. Mathar, Apr 21 2006
More terms from Joshua Zucker, May 08 2006
Name simplified by Jon E. Schoenfield, Jun 15 2019
Comments