A093101 Cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.
1, 1, 1, 2, 1, 2, 1, 20, 1, 10, 1, 8, 5, 2, 5, 4, 1, 130, 1, 4000, 1, 2, 5, 52, 5, 494, 1, 40, 1, 10, 13, 4, 25, 38, 5, 16, 13, 230, 13, 20, 1, 46, 5, 104, 475, 62, 1, 20, 1, 130, 31, 832, 2755, 74, 5, 4, 13, 50, 1, 40, 23, 2, 2795, 76, 34385, 2, 1, 80, 1, 650, 1, 2812, 5, 74, 5
Offset: 0
Keywords
Examples
E.g. 1/0!+1/1!+1/2!+1/3!=16/6=(2*8)/(2*3) so a(3)=2.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..4096
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
Crossrefs
Programs
-
Mathematica
f[n_] := n! / Denominator[ Sum[1/k!, {k, 0, n}]]; Table[ f[n], {n, 0, 74}] (* Robert G. Wilson v *) (* Second program: *) A[n_] := If[n==0,1,n*A[n-1]+1]; Table[GCD[A[n],n! ], {n, 0, 74}]
-
PARI
A000522(n) = sum(k=0, n, binomial(n, k)*k!); \\ This function from Joerg Arndt, Dec 14 2014 A093101(n) = gcd(n!,A000522(n)); \\ Antti Karttunen, Jul 12 2017
Formula
a(n) = gcd(n!, 1+n+n(n-1)+n(n-1)(n-2)+...+n!).
a(n) = gcd(n!, A(n)) where A(0) = 1, A(n) = n*A(n-1)+1.
Extensions
More terms from Robert G. Wilson v, May 14 2004
Comments