cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093101 Cancellation factor in reducing Sum_{k=0...n} 1/k! to lowest terms.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 20, 1, 10, 1, 8, 5, 2, 5, 4, 1, 130, 1, 4000, 1, 2, 5, 52, 5, 494, 1, 40, 1, 10, 13, 4, 25, 38, 5, 16, 13, 230, 13, 20, 1, 46, 5, 104, 475, 62, 1, 20, 1, 130, 31, 832, 2755, 74, 5, 4, 13, 50, 1, 40, 23, 2, 2795, 76, 34385, 2, 1, 80, 1, 650, 1, 2812, 5, 74, 5
Offset: 0

Views

Author

Jonathan Sondow, May 10 2004, Oct 18 2006

Keywords

Comments

Same as n!/A061355(n) and (1+n+n(n-1)+n(n-1)(n-2)+...+n!)/A061354(n).
a(n) is relatively prime to n.
gcd(a(n),a(n+1)) = 1.

Examples

			E.g. 1/0!+1/1!+1/2!+1/3!=16/6=(2*8)/(2*3) so a(3)=2.
		

Crossrefs

(n+1)!/(a(n)*a(n+1)) = A123899(n).
(n+3)!/(a(n)*a(n+1)*a(n+2)) = A123900(n).
(n+3)/GCD(a(n), a(n+2)) = A123901(n).
Cf. also A000522, A061354, A061355.

Programs

  • Mathematica
    f[n_] := n! / Denominator[ Sum[1/k!, {k, 0, n}]]; Table[ f[n], {n, 0, 74}] (* Robert G. Wilson v *)
    (* Second program: *)
    A[n_] := If[n==0,1,n*A[n-1]+1]; Table[GCD[A[n],n! ], {n, 0, 74}]
  • PARI
    A000522(n) = sum(k=0, n, binomial(n, k)*k!); \\ This function from Joerg Arndt, Dec 14 2014
    A093101(n) = gcd(n!,A000522(n)); \\ Antti Karttunen, Jul 12 2017

Formula

a(n) = gcd(n!, 1+n+n(n-1)+n(n-1)(n-2)+...+n!).
a(n) = gcd(n!, A(n)) where A(0) = 1, A(n) = n*A(n-1)+1.

Extensions

More terms from Robert G. Wilson v, May 14 2004