A093119 Number of convex polyominoes with a 3 X n+1 minimal bounding rectangle.
13, 68, 222, 555, 1171, 2198, 3788, 6117, 9385, 13816, 19658, 27183, 36687, 48490, 62936, 80393, 101253, 125932, 154870, 188531, 227403, 271998, 322852, 380525, 445601, 518688, 600418, 691447, 792455, 904146, 1027248, 1162513
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- V. J. W. Guo and J. Zeng, The number of convex polyominoes and the generating function of Jacobi polynomials, arXiv:math/0403262 [math.CO], 2004.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Row 2 of triangle A093118.
Programs
-
GAP
List([1..40], n-> (6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6); # G. C. Greubel, Jun 26 2019
-
Magma
[(6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6: n in [1..40]]; // G. C. Greubel, Jun 26 2019
-
Mathematica
a[n_] := n^4 + 10*n^3/3 + 9*n^2/2 + 19*n/6 + 1; Array[a, 40] (* Jean-François Alcover, Feb 24 2019 *)
-
PARI
Vec(x*(13 + 3*x + 12*x^2 - 5*x^3 + x^4) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Feb 24 2019
-
Sage
[(6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6 for n in (1..40)] # G. C. Greubel, Jun 26 2019
Formula
a(n) = ((3*n+2)*C(2n+4, 4) - 4*n*C(n+2, n)^2)/(n+2), n>0.
a(n) = (6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6.
From Colin Barker, Feb 24 2019: (Start)
G.f.: x*(13 + 3*x + 12*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: -1 + (6 + 72*x + 129*x^2 + 56*x^3 + 6*x^4)*exp(x)/6. - G. C. Greubel, Jun 26 2019