cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093119 Number of convex polyominoes with a 3 X n+1 minimal bounding rectangle.

Original entry on oeis.org

13, 68, 222, 555, 1171, 2198, 3788, 6117, 9385, 13816, 19658, 27183, 36687, 48490, 62936, 80393, 101253, 125932, 154870, 188531, 227403, 271998, 322852, 380525, 445601, 518688, 600418, 691447, 792455, 904146, 1027248, 1162513
Offset: 1

Views

Author

Ralf Stephan, Mar 21 2004

Keywords

Crossrefs

Row 2 of triangle A093118.

Programs

  • GAP
    List([1..40], n-> (6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6); # G. C. Greubel, Jun 26 2019
  • Magma
    [(6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6: n in [1..40]]; // G. C. Greubel, Jun 26 2019
    
  • Mathematica
    a[n_] := n^4 + 10*n^3/3 + 9*n^2/2 + 19*n/6 + 1; Array[a, 40] (* Jean-François Alcover, Feb 24 2019 *)
  • PARI
    Vec(x*(13 + 3*x + 12*x^2 - 5*x^3 + x^4) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Feb 24 2019
    
  • Sage
    [(6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6 for n in (1..40)] # G. C. Greubel, Jun 26 2019
    

Formula

a(n) = ((3*n+2)*C(2n+4, 4) - 4*n*C(n+2, n)^2)/(n+2), n>0.
a(n) = (6*n^4 + 20*n^3 + 27*n^2 + 19*n + 6)/6.
From Colin Barker, Feb 24 2019: (Start)
G.f.: x*(13 + 3*x + 12*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: -1 + (6 + 72*x + 129*x^2 + 56*x^3 + 6*x^4)*exp(x)/6. - G. C. Greubel, Jun 26 2019