cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093126 G.f.: A(x) = x/(1 - x - G001190(x^2)), where G001190 is the g.f. of A001190, the Wedderburn-Etherington numbers (binary rooted trees).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 19, 33, 62, 110, 204, 366, 675, 1219, 2239, 4059, 7439, 13518, 24737, 45018, 82304, 149924, 273929, 499290, 911902, 1662787, 3036105, 5537577, 10109364, 18441799, 33663239, 61416729, 112099746, 204536183, 373305550, 681166986, 1243173492, 2268490929, 4140035734, 7554756990, 13787320832, 25159612832, 45915363672
Offset: 1

Views

Author

Paul D. Hanna, Mar 23 2004

Keywords

Comments

Not the same as A003237.

Examples

			A(x) = x + x^2 + 2x^3 + 3x^4 + 6x^5 + 10x^6 + 19x^7 + 33x^8 + ... = x/(1-x -(x^2 + x^4 + x^6 + 2x^8 + 3x^10 + 11x^12 + 23x^14 + ...)).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x,u,v); for(k=2,n,u=A+x*O(x^k); v=subst(u,x,x^2); A-=x^k*polcoeff(u^2 -v*(1+2*u+2*u^2),k+1)/2); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. satisfies the following identities:
(1) A(x^2) = A(x)^2 / (1 + 2*A(x) + 2*A(x)^2),
(2) A(-x) = -A(x) / (1 + 2*A(x)),
(3) A(x) + A(-x) = -2*A(x)*A(-x),
(4) A(x)^2 / (1 + 2*A(x)) = A(x^2) / (1 - 2*A(x^2)).

Extensions

Changed offset to 1 and removed leading zero. - Paul D. Hanna, Aug 16 2016