A093367 Number of n-bead necklaces using exactly three colors with no adjacent beads having the same color.
0, 0, 2, 3, 6, 11, 18, 33, 58, 105, 186, 349, 630, 1179, 2190, 4113, 7710, 14599, 27594, 52485, 99878, 190743, 364722, 699249, 1342182, 2581425, 4971066, 9587577, 18512790, 35792565, 69273666, 134219793, 260301174, 505294125, 981706830, 1908881897, 3714566310
Offset: 1
Keywords
Examples
a(3) = 2 because the two necklaces 123 and 132 have no adjacent equal elements. - _Andrew Howroyd_, Dec 21 2019
References
- David W. Hobill and Scott MacDonald (zeened(AT)shaw.ca), Preprint, 2004.
- P. K.-H. Ma and J. Wainwright, A dynamical systems approach to the oscillatory singularity in Bianchi cosmologies, Relativity Today, 1994.
Links
- P. K.-H. Ma and J. Wainwright, A dynamical systems approach to the oscillatory singularity in Bianchi cosmologies, Deterministic Chaos in General Relativity, pp. 449-462, 1994.
Programs
-
Mathematica
Table[Mod[n, 2] - 3 + DivisorSum[n, EulerPhi[n/#] 2^# &]/n, {n, 37}] (* Michael De Vlieger, Dec 22 2019 *)
-
PARI
a(n)={n%2 - 3 + sumdiv(n, d, eulerphi(n/d)*2^d)/n} \\ Andrew Howroyd, Dec 21 2019
Formula
a(n) = A000031(n) - (5 + (-1)^n)/2. - Andrew Howroyd, Dec 21 2019
Extensions
Name changed by Andrew Howroyd, Dec 21 2019
a(1)-a(2) prepended and terms a(20) and beyond from Andrew Howroyd, Dec 21 2019
Comments