cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093370 Start with any initial string of n numbers s(1), ..., s(n), with s(1) = 2, other s(i)'s = 2 or 3 (so there are 2^(n-1) starting strings). The rule for extending the string is this as follows: To get s(n+1), write the string s(1)s(2)...s(n) as xy^k for words x and y (where y has positive length) and k is maximized, i.e., k = the maximal number of repeating blocks at the end of the sequence. Then a(n) = number of starting strings for which k > 1.

Original entry on oeis.org

0, 1, 2, 5, 10, 22, 44, 91, 182, 369, 738, 1486, 2972, 5962, 11924, 23884, 47768, 95607, 191214, 382568, 765136, 1530552, 3061104, 6122765, 12245530, 24492171, 48984342, 97970902, 195941804, 391888040
Offset: 1

Views

Author

N. J. A. Sloane, Apr 28 2004

Keywords

Examples

			For n=2 there are 2 starting strings, 22 and 23 and only the first has k > 1.
For n=4 there are 8 starting strings, but only 5 have k > 1, namely 2222, 2233, 2322, 2323, 2333.
		

Crossrefs

Formula

Equals A121880(n)/2, or 2^(n-1) - A122536(n)/2.
a(n)/2^(n-1) seems to converge to a number around 0.73.

Extensions

More terms from Sarah Nibs, via A122536, Sep 18 2006