cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A093371 Start with any initial string of n numbers s(1), ..., s(n), with s(1) = 2, other s(i)'s = 2 or 3 (so there are 2^(n-1) starting strings). The rule for extending the string is this as follows: To get s(n+1), write the string s(1)s(2)...s(n) as xy^k for words x and y (where y has positive length) and k is maximized, i.e., k = the maximal number of repeating blocks at the end of the sequence. Then a(n) = number of starting strings for which k = 1.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 37, 74, 143, 286, 562, 1124, 2230, 4460, 8884, 17768, 35465, 70930, 141720, 283440, 566600, 1133200, 2265843, 4531686, 9062261, 18124522, 36246826, 72493652, 144982872
Offset: 1

Views

Author

N. J. A. Sloane, Apr 28 2004

Keywords

Comments

See A122536 for many more terms. - N. J. A. Sloane, Oct 25 2012

Crossrefs

Equals A122536/2. - N. J. A. Sloane, Sep 25 2012
Different from, but easily confused with, A007148 and A045690.

Formula

a(n) = 2^(n-1) - A093370(n).

Extensions

More terms from N. J. A. Sloane, Sep 26 2012

A121880 a(n) = 2^n - A122536(n).

Original entry on oeis.org

0, 2, 4, 10, 20, 44, 88, 182, 364, 738, 1476, 2972, 5944, 11924, 23848, 47768, 95536, 191214, 382428, 765136, 1530272, 3061104, 6122208, 12245530, 24491060, 48984342, 97968684, 195941804, 391883608, 783776080, 1567552160, 3135122038, 6270244076
Offset: 1

Views

Author

N. J. A. Sloane, Sep 21 2006

Keywords

Comments

Number of binary sequences of length n with curling number > 1. See A122536 for much more information.

Crossrefs

Cf. A122536. Similar to but different from A094536.
See also A093370.

A093369 a(n) = sum of lengths of strings that can be generated by any starting string of n 2's and 3's that starts with a 2, using the rule described in the Comments lines.

Original entry on oeis.org

1, 6, 14, 42, 98, 242, 552, 1394, 2935, 6471, 14006, 30060, 64223, 136914, 290224, 613509, 1292567, 2717311, 5696864, 11920124, 24889066, 51880008, 107954163, 224305440, 465388743, 964349526, 1995808823, 4125871527, 8520180124, 17577302639, 36228352911
Offset: 1

Views

Author

N. J. A. Sloane, Apr 28 2004

Keywords

Comments

Start with any initial string of n numbers s(1), ..., s(n), with s(1) = 2, other s(i)'s = 2 or 3 (so there are 2^(n-1) starting strings). The rule for extending the string is this:
To get s(i+1), write the string s(1)s(2)...s(i) as xy^k for words x and y (where y has positive length) and k is maximized, i.e. k = the maximal number of repeating blocks at the end of the sequence so far. Then s(i+1) = k if k >=2, but if k=1 you must stop (without writing down the 1).
a(n) = sum of final length of string, summed over all 2^(n-1) starting strings.

Examples

			a(3) = 14: the starting string, final string and length are as follows:
222 2223 4
223 223 3
232 232 3
233 2332 4, for a total of 4+3+3+4 = 14.
		

Crossrefs

Extensions

a(21)-a(31) from Lars Blomberg, Jul 25 2017

A094005 a(n) = sum of lengths of strings that can be generated by any starting string of n 2's and 3's, using the rule described in the Comments lines.

Original entry on oeis.org

2, 11, 30, 82, 199, 480, 1097, 2630, 5828, 12830, 27873, 60071, 128355, 273543, 580149, 1226626, 2584822, 5433676, 11392986, 23838396, 49776503, 103755527, 215904926, 448602871, 930771041, 1928682932, 3991605129, 8251710234, 17040335019, 35154540729, 72456654860, 149208536983
Offset: 1

Views

Author

N. J. A. Sloane, May 31 2004

Keywords

Comments

Start with any initial string of n numbers s(1), ..., s(n), all = 2 or 3 (so there are 2^n starting strings). The rule for extending the string is this:
To get s(i+1), write the string s(1)s(2)...s(i) as xy^k for words x and y (where y has positive length) and k is maximized, i.e., k = the maximal number of repeating blocks at the end of the sequence so far (k is the curling number of s(1)s(2)...s(i)). Then s(i+1) = k if k >=2, but if k=1 you must stop (without writing down the 1).
a(n) = sum of final length of string, summed over all 2^n starting strings.
See A094004 for more terms. - N. J. A. Sloane, Dec 25 2012

Crossrefs

Formula

Equals A216813(n) + n*2^n. - N. J. A. Sloane, Sep 26 2012
A093369 is closely related.

Extensions

a(27)-a(31) from N. J. A. Sloane, Sep 19 2012

A211968 Triangle of binary numbers with some initial repeats.

Original entry on oeis.org

11, 110, 111, 1010, 1100, 1101, 1110, 1111, 10100, 10101, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100100, 101000, 101001, 101010, 101011, 101101, 110000, 110001, 110010, 110011, 110100, 110101, 110110, 110111, 111000, 111001, 111010, 111011
Offset: 2

Views

Author

Omar E. Pol, Dec 03 2012

Keywords

Comments

Triangle read by rows in which row n lists the binary numbers with n digits and with some initial repeats, n >= 2.
Also triangle read by rows in which row n lists the binary words of length n with some initial repeats and with initial digit 1, n >= 2.

Examples

			Triangle begins, starting at row 2:
  11;
  110, 111;
  1010, 1100, 1101, 1110, 1111;
  10100, 10101, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111;
		

Crossrefs

Complement in base 2 of A211027.
Rows lengths give: A093370.

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
          [[x[], 0], [x[], 1]][], s(n-1))) end:
    T:= proc(n) map(x-> parse(cat(x[])), select(proc(l) local i;
          for i to iquo(nops(l), 2) do if l[1..i]=l[i+1..2*i]
          then return true fi od; false end, s(n)))[] end:
    seq(T(n), n=2..7);  # Alois P. Heinz, Dec 04 2012
  • Mathematica
    T[n_] := FromDigits /@ Select[Range[2^(n-1), 2^n-1] // IntegerDigits[#, 2]&, FindTransientRepeat[Reverse[#], 2][[2]] != {}&];
    Table[T[n], {n, 2, 7}] // Flatten (* Jean-François Alcover, Feb 12 2025 *)

A211969 Triangle of decimal equivalents of binary numbers with some initial repeats, A211968.

Original entry on oeis.org

3, 6, 7, 10, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
Offset: 2

Views

Author

Omar E. Pol, Dec 03 2012

Keywords

Examples

			Irregular triangle begins, starting at row 2:
3;
6, 7;
10, 12, 13, 14, 15;
20, 21, 24, 25, 26, 27, 28, 29, 30, 31;
36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63;
		

Crossrefs

Complement of A211967.
Row lengths give: A093370.
Column 1 gives: A005418(n+1).
Right border gives: A000225(n).

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
          [[x[], 0], [x[], 1]][], s(n-1))) end:
    T:= proc(n) map (x-> add(x[i]*2^(nops(x)-i), i=1..nops(x)), select
          (proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]=
          l[i+1..2*i] then return true fi od; false end, s(n)))[] end:
    seq (T(n), n=2..7);  # Alois P. Heinz, Dec 04 2012

A211973 a(n) = A121880(2*n)/2.

Original entry on oeis.org

1, 5, 22, 91, 369, 1486, 5962, 23884, 95607, 382568, 1530552, 6122765, 24492171, 97970902, 391888040, 1567561019, 6270261786, 25081082556, 100324401036, 401297745749, 1605191266193, 6420765631136, 25683063657239, 102732256894319
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2012

Keywords

Crossrefs

Bisection of A093370.

Extensions

More terms from Hakan Icoz, Sep 04 2020

A211975 A122536(2n)/2.

Original entry on oeis.org

1, 3, 10, 37, 143, 562, 2230, 8884, 35465, 141720, 566600, 2265843, 9062261, 36246826, 144982872, 579922629, 2319672806, 9278655812, 37114552436, 148458068139, 593831989359, 2375327391072, 9501308431593, 38005231461009, 152020921313377
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2012

Keywords

Crossrefs

Bisection of A093371.
Showing 1-8 of 8 results.