cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A211973 a(n) = A121880(2*n)/2.

Original entry on oeis.org

1, 5, 22, 91, 369, 1486, 5962, 23884, 95607, 382568, 1530552, 6122765, 24492171, 97970902, 391888040, 1567561019, 6270261786, 25081082556, 100324401036, 401297745749, 1605191266193, 6420765631136, 25683063657239, 102732256894319
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2012

Keywords

Crossrefs

Bisection of A093370.

Extensions

More terms from Hakan Icoz, Sep 04 2020

A122536 Number of binary sequences of length n with no initial repeats (or, with no final repeats).

Original entry on oeis.org

2, 2, 4, 6, 12, 20, 40, 74, 148, 286, 572, 1124, 2248, 4460, 8920, 17768, 35536, 70930, 141860, 283440, 566880, 1133200, 2266400, 4531686, 9063372, 18124522, 36249044, 72493652, 144987304, 289965744
Offset: 1

Views

Author

Sarah Nibs, Sep 18 2006

Keywords

Comments

An initial repeat of a string S is a number k>=1 such that S(i)=S(i+k) for i=0..k-1. In other words, the first k symbols are the same as the next k symbols, e.g., ABCDABCDZQQ has an initial repeat of size 4.
Equivalently, this is the number of binary sequences of length n with curling number 1. See A216955. - N. J. A. Sloane, Sep 26 2012

Examples

			a(4)=6: 0100, 0110, 0111, 1000, 1001 and 1011. (But not 00**, 11**, 0101, 1010.)
		

Crossrefs

Twice A093371. Leading column of each of the triangles A216955, A217209, A218869, A218870. Different from, but easily confused with, A003000 and A216957. - N. J. A. Sloane, Sep 26 2012
See A121880 for difference from 2^n.

Formula

Conjecture: a_n ~ C * 2^n where C is 0.27004339525895354325... [Chaffin, Linderman, Sloane, Wilks, 2012]
a(2n+1)=2*a(2n) = A211965(n+1), a(2n)=2*a(2n-1)-A216958(n) = A211966(n). - N. J. A. Sloane, Sep 28 2012
a(1) = 2; a(2n) = 2*[a(2n-1) - A216959(n)], n >= 1. - Daniel Forgues, Feb 25 2015

Extensions

a(31)-a(71) computed from recurrence and the first 30 terms of A216958 by N. J. A. Sloane, Sep 28 2012, Oct 25 2012

A093370 Start with any initial string of n numbers s(1), ..., s(n), with s(1) = 2, other s(i)'s = 2 or 3 (so there are 2^(n-1) starting strings). The rule for extending the string is this as follows: To get s(n+1), write the string s(1)s(2)...s(n) as xy^k for words x and y (where y has positive length) and k is maximized, i.e., k = the maximal number of repeating blocks at the end of the sequence. Then a(n) = number of starting strings for which k > 1.

Original entry on oeis.org

0, 1, 2, 5, 10, 22, 44, 91, 182, 369, 738, 1486, 2972, 5962, 11924, 23884, 47768, 95607, 191214, 382568, 765136, 1530552, 3061104, 6122765, 12245530, 24492171, 48984342, 97970902, 195941804, 391888040
Offset: 1

Views

Author

N. J. A. Sloane, Apr 28 2004

Keywords

Examples

			For n=2 there are 2 starting strings, 22 and 23 and only the first has k > 1.
For n=4 there are 8 starting strings, but only 5 have k > 1, namely 2222, 2233, 2322, 2323, 2333.
		

Crossrefs

Formula

Equals A121880(n)/2, or 2^(n-1) - A122536(n)/2.
a(n)/2^(n-1) seems to converge to a number around 0.73.

Extensions

More terms from Sarah Nibs, via A122536, Sep 18 2006

A211968 Triangle of binary numbers with some initial repeats.

Original entry on oeis.org

11, 110, 111, 1010, 1100, 1101, 1110, 1111, 10100, 10101, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100100, 101000, 101001, 101010, 101011, 101101, 110000, 110001, 110010, 110011, 110100, 110101, 110110, 110111, 111000, 111001, 111010, 111011
Offset: 2

Views

Author

Omar E. Pol, Dec 03 2012

Keywords

Comments

Triangle read by rows in which row n lists the binary numbers with n digits and with some initial repeats, n >= 2.
Also triangle read by rows in which row n lists the binary words of length n with some initial repeats and with initial digit 1, n >= 2.

Examples

			Triangle begins, starting at row 2:
  11;
  110, 111;
  1010, 1100, 1101, 1110, 1111;
  10100, 10101, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111;
		

Crossrefs

Complement in base 2 of A211027.
Rows lengths give: A093370.

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
          [[x[], 0], [x[], 1]][], s(n-1))) end:
    T:= proc(n) map(x-> parse(cat(x[])), select(proc(l) local i;
          for i to iquo(nops(l), 2) do if l[1..i]=l[i+1..2*i]
          then return true fi od; false end, s(n)))[] end:
    seq(T(n), n=2..7);  # Alois P. Heinz, Dec 04 2012
  • Mathematica
    T[n_] := FromDigits /@ Select[Range[2^(n-1), 2^n-1] // IntegerDigits[#, 2]&, FindTransientRepeat[Reverse[#], 2][[2]] != {}&];
    Table[T[n], {n, 2, 7}] // Flatten (* Jean-François Alcover, Feb 12 2025 *)

A211969 Triangle of decimal equivalents of binary numbers with some initial repeats, A211968.

Original entry on oeis.org

3, 6, 7, 10, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
Offset: 2

Views

Author

Omar E. Pol, Dec 03 2012

Keywords

Examples

			Irregular triangle begins, starting at row 2:
3;
6, 7;
10, 12, 13, 14, 15;
20, 21, 24, 25, 26, 27, 28, 29, 30, 31;
36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63;
		

Crossrefs

Complement of A211967.
Row lengths give: A093370.
Column 1 gives: A005418(n+1).
Right border gives: A000225(n).

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
          [[x[], 0], [x[], 1]][], s(n-1))) end:
    T:= proc(n) map (x-> add(x[i]*2^(nops(x)-i), i=1..nops(x)), select
          (proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]=
          l[i+1..2*i] then return true fi od; false end, s(n)))[] end:
    seq (T(n), n=2..7);  # Alois P. Heinz, Dec 04 2012

A211975 A122536(2n)/2.

Original entry on oeis.org

1, 3, 10, 37, 143, 562, 2230, 8884, 35465, 141720, 566600, 2265843, 9062261, 36246826, 144982872, 579922629, 2319672806, 9278655812, 37114552436, 148458068139, 593831989359, 2375327391072, 9501308431593, 38005231461009, 152020921313377
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2012

Keywords

Crossrefs

Bisection of A093371.
Showing 1-6 of 6 results.