A211027 Triangle of binary numbers >= 1 with no initial repeats.
1, 10, 100, 101, 1000, 1001, 1011, 10000, 10001, 10010, 10011, 10110, 10111, 100000, 100001, 100010, 100011, 100101, 100110, 100111, 101100, 101110, 101111, 1000000, 1000001, 1000010, 1000011, 1000100, 1000101, 1000110, 1000111, 1001010, 1001011, 1001100, 1001101, 1001110, 1001111, 1011000, 1011001, 1011100, 1011101, 1011110, 1011111
Offset: 1
Examples
Triangle begins: 1; 10; 100, 101; 1000, 1001, 1011; 10000, 10001, 10010, 10011, 10110, 10111; 100000, 100001, 100010, 100011, 100101, 100110, 100111, 101100, 101110, 101111; 1000000, 1000001, 1000010, 1000011, 1000100, 1000101, 1000110, 1000111, 1001010, 1001011, 1001100, 1001101, 1001110, 1001111, 1011000, 1011001, 1011100, 1011101, 1011110, 1011111;
Links
Crossrefs
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=1, [[1]], map(x-> [[x[], 0], [x[], 1]][], s(n-1))) end: T:= proc(n) map(x-> parse(cat(x[])), select(proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]=l[i+1..2*i] then return false fi od; true end, s(n)))[] end: seq(T(n), n=1..7); # Alois P. Heinz, Dec 02 2012
-
Mathematica
T[n_] := If[n == 1, {1}, FromDigits /@ Select[Range[2^(n-1), 2^n-2] // IntegerDigits[#, 2]&, FindTransientRepeat[Reverse[#], 2][[2]] == {}&]]; Array[T, 7] // Flatten (* Jean-François Alcover, Feb 27 2021 *)
Comments