A093382
a(n) = length k of longest binary sequence x(1) ... x(k) such that for no n <= i < j <= k/2 is x(i) ... x(2i) a subsequence of x(j) ... x(2j).
Original entry on oeis.org
a(1) = 11 from 01110000000.
- a(1) - a(3) computed by R. Dougherty, who finds that a(4) >= 187205.
A094091
a(1) = 0; for n>0, a(n) = smaller of 0 and 1 such that we avoid the property that, for some i and j in the range S = 2 <= i < j <= n/2, a(i) ... a(2i) is a subsequence of a(j) ... a(2j).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0
Offset: 1
After a(1) = a(2) = a(3) = a(4) = 0 we must have a(5) = 1, or else we would have a(2)a(3)a(4) = 000 as a subsequence of a(3)a(4)a(5)a(6) = 000a(6).
The remaining terms, a(17)-a(23), were sent by
Joshua Zucker, Jul 23 2006
Showing 1-2 of 2 results.
Comments