A093423 Consider the triangle whose first part is shown as an example in the entry A093422. If the n-th term of the triangle read by rows is a fraction then a(n) is the denominator of the fraction, otherwise a(n)=1.
1, 1, 3, 1, 5, 1, 1, 7, 3, 5, 1, 9, 1, 7, 1, 1, 11, 1, 1, 1, 7, 1, 13, 3, 11, 5, 3, 1, 1, 15, 1, 13, 1, 11, 1, 1, 1, 17, 1, 5, 1, 13, 1, 11, 1, 1, 19, 3, 17, 1, 1, 7, 13, 1, 11, 1, 21, 1, 19, 1, 17, 1, 1, 1, 13, 1, 1, 23, 1, 7, 5, 19, 1, 17, 1, 1, 1, 13
Offset: 1
Examples
Triangle begins: 1; 1, 3; 1, 5, 1; 1, 7, 3, 5; 1, 9, 1, 7, 1; 1, 11, 1, 1, 1, 7; 1, 13, 3, 11, 5, 3, 1; 1, 15, 1, 13, 1, 11, 1, 1; ...
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
Crossrefs
Programs
-
Magma
/* as a triangle */ [[Denominator(2*Binomial(n,k)*Factorial(k-1)/(2*n-k+1)): k in [1..n]]: n in [1..30]]; // G. C. Greubel, Sep 01 2018
-
Maple
A09342x := proc(n,m) local a,i,N,D ; N := n ; if m = 1 then D := 1 ; else D := n ; end ; for i from 1 to m-1 do N := N*(n-i) ; D := D+n-i ; od ; simplify(N/D) ; end: A093423 := proc(n,m) denom(A09342x(n,m)) ; end: for n from 1 to 12 do for m from 1 to n do printf("%d, ",A093423(n,m)) ; od ; od ; # R. J. Mathar, Apr 28 2007
-
Mathematica
Table[Denominator[2*Binomial[n,k]*(k-1)!/(2*n-k+1)], {n,1,30}, {k,1,n}]//Flatten (* G. C. Greubel, Sep 01 2018 *)
-
PARI
for(n=1,10, for(k=1,n, print1(denominator(2*binomial(n,k)*(k-1)!/(2*n-k+1)), ", "))) \\ G. C. Greubel, Sep 01 2018
Formula
A093422(n,m)/A093423(n,m) = 2*binomial(n,m)*(m-1)!/(2*n-m+1) for 2 <= m < n. A093422(n,1)/A093423(n,1)= n. - R. J. Mathar, Apr 28 2007
Extensions
More terms from R. J. Mathar, Apr 28 2007
Better definition from Omar E. Pol, Jan 10 2009