cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093432 a(n) = lcm_{k=1..n} (lcm(n,n-1,...,n-k+2,n-k+1)/lcm(1,2,...,k)).

Original entry on oeis.org

1, 2, 3, 12, 10, 30, 105, 280, 252, 1260, 2310, 4620, 4290, 6006, 15015, 240240, 680680, 6126120, 11639628, 2771340, 1763580, 19399380, 223092870, 178474296, 171609900, 743642900, 1434168450, 20078358300, 19409079690, 19409079690, 300840735195, 875173047840
Offset: 1

Views

Author

Amarnath Murthy, Mar 31 2004

Keywords

Examples

			a(4) = lcm(lcm(4)/lcm(1), lcm(4,3)/lcm(1,2), lcm(4,3,2)/lcm(1,2,3), lcm(4,3,2,1)/lcm(1,2,3,4)) = lcm(4,6,2,1) = 12.
		

Crossrefs

LCM of the terms in row n of the triangle in A093430.

Programs

  • Maple
    T:=(n,k)->lcm(seq(i,i=n-k+1..n))/lcm(seq(j,j=1..k)): seq(lcm(seq(T(n,k),k=1..n)),n=1..35); # Emeric Deutsch, Jan 30 2006
    # second Maple program:
    b:= proc(n) option remember; `if`(n=1, 1, ilcm(b(n-1), n)) end:
    a:= proc(n) option remember; local k, r, s; r, s:= 1, 1;
          for k to n do s:= ilcm(s,n-k+1); r:= ilcm(r,s/b(k)) od; r
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Mar 17 2018
  • Mathematica
    b[n_] := b[n] = If[n == 1, 1, LCM[b[n - 1], n]];
    a[n_] := a[n] = Module[{k, r = 1, s = 1}, For[k = 1, k <= n, k++, s = LCM[s, n - k + 1]; r = LCM[r, s/b[k]]]; r];
    Array[a, 40] (* Jean-François Alcover, Jun 18 2018, after Alois P. Heinz *)

Extensions

Corrected and extended by Emeric Deutsch, Jan 30 2006