A093437 a(n) = largest prime of the form n!/k! + 1.
2, 2, 3, 7, 13, 61, 31, 2521, 20161, 15121, 604801, 39916801, 3991681, 3113510401, 14529715201, 54486432001, 10461394944001, 59281238016001, 53353114214401, 2, 670442572801, 8515157028618240001, 9366672731480064001
Offset: 0
Keywords
Examples
a(7) = 2521 because 7!/2! + 1 = 2521 is prime, whereas 7!/1! + 1 = 5041 = 71^2 is composite; a(19) = 2 because the only prime of the form 19!/k! + 1 is 19!/19! + 1 = 2.
Links
- Robert Israel, Table of n, a(n) for n = 0..466
Crossrefs
Programs
-
Maple
f:= proc(n) local k,x; x:= n!; for k from 2 do if isprime(x+1) then return x+1 fi; x:= x/k; od end proc: map(f, [$0..40]); # Robert Israel, Jan 16 2017
-
Mathematica
a[n_] := Module[{k, x}, x = n!; For[k = 2, True, k++, If[PrimeQ[x+1], Return[x+1]]; x = x/k]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 08 2023, after Robert Israel *)
Extensions
Corrected and extended by Hugo Pfoertner, Apr 06 2004
Comments