A299539 Numbers n = d_1 d_2 ... d_k (in base 10) such that d_i + d_{k+1-i} = 10 for i = 1..k.
5, 19, 28, 37, 46, 55, 64, 73, 82, 91, 159, 258, 357, 456, 555, 654, 753, 852, 951, 1199, 1289, 1379, 1469, 1559, 1649, 1739, 1829, 1919, 2198, 2288, 2378, 2468, 2558, 2648, 2738, 2828, 2918, 3197, 3287, 3377, 3467, 3557, 3647, 3737, 3827, 3917, 4196, 4286
Offset: 1
Examples
1 + 9 = 10 and 5 + 5 = 10 and 9 + 1 = 10, hence 159 belongs to this sequence. 4 + 2 = 6, hence 42 does not belong to this sequence.
Links
- Robert E. Kennedy and Curtis N. Cooper, Bach, 5465, and Upside-Down Numbers, The College Mathematics Journal, Vol. 18, No. 2 (Mar., 1987), pp. 111-115.
- Giovanni Resta, Upside-down numbers, Numbers Aplenty.
Programs
-
Maple
Res:= NULL; for d from 1 to 3 do for x from 0 to 9^(d-1)-1 do L:= convert(9^(d-1)+x,base,9)[1..d-1]; Res:= Res, 5*10^(d-1)+add((1+L[-i])*10^(2*d-1-i)+(9-L[-i])*10^(i-1),i=1..d-1) od; for x from 0 to 9^d-1 do L:= convert(9^d+x,base,9)[1..d]; Res:= Res, add((1+L[-i])*10^(2*d-i)+(9-L[-i])*10^(i-1),i=1..d) od od: Res; # Robert Israel, Mar 06 2018
-
Mathematica
Select[Range[4300], AllTrue[#1[[1 ;; #2]] + Reverse@ #1[[-#2 ;; -1]], # == 10 &] & @@ {#, Ceiling[Length[#]/2]} &@ IntegerDigits[#] &] (* Michael De Vlieger, Nov 04 2020 *)
-
PARI
is(n) = my (d=digits(n)); Set(d+Vecrev(d))==Set(10)
Comments