cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093476 Index of occurrence of the first 0 bit in binary representation of 3^n.

Original entry on oeis.org

2, 3, 2, 5, 2, 2, 3, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 2, 3, 2, 4, 2, 2, 3, 2, 3, 2, 6, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 7, 2, 2, 3, 2, 5, 2, 2, 3, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 2, 3, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 2, 3, 2, 4, 2, 2, 3, 2, 3, 2, 6, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 7, 2, 2, 3, 2, 5, 2, 2, 3, 2, 4, 2, 2
Offset: 2

Views

Author

Benoit Cloitre, May 22 2004

Keywords

Examples

			In binary, 3^5 = [1, 1, 1, 1, 0, 0, 1, 1] where the first 0 occurs at 5th place. Hence a(5)=5.
		

Crossrefs

Programs

  • Maple
    seq(ListTools:-Search(0, ListTools:-Reverse(convert(3^n,base,2))), n=2..200); # Robert Israel, Nov 20 2017
  • Mathematica
    Array[FirstPosition[IntegerDigits[3^#, 2], 0][[1]] &, 105, 2] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    a(n)=if(n<2,0,s=1;while(component(binary(3^n),s)>0,s++);s)

Formula

It seems that Sum_{i=2..n} a(i) is asymptotic to c*n with c=2.7(8).....
From Robert Israel, Nov 20 2017: (Start)
a(n) = k if log_2(2 - 1/2^(k-2)) < frac(n*log_2(3)) < log_2(2 - 1/2^(k-1)). By the equidistribution theorem, this occurs with asymptotic density log_2(2-1/2^(k-1)) - log_2(2-1/2^(k-2)).
Thus c = Sum_{k>=2} k (log_2(2-1/2^(k-1)) - log_2(2 - 1/2^(k-2))) = 2 - Sum_{k>=2} log_2(1-1/2^k) = 2.791916824662... Note that A048651 is the decimal expansion of 2^(1-c). (End)