A093569 For p = prime(n), the number of integers k < p-1 such that p divides A001008(k), the numerator of the harmonic number H(k).
0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
a(5) = 2 because 11 = prime(5) and there are 2 values, k = 3 and 7, such that 11 divides A001008(k).
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- Eric Weisstein's World of Mathematics, Harmonic Number
- Eric Weisstein's World of Mathematics, Wieferich Prime
Programs
-
Mathematica
len=500; Table[p=Prime[i]; cnt=0; k=1; While[k
Comments