A093611 Numerators of convergents to 3/(1 + sqrt(10)).
0, 1, 3, 4, 7, 18, 25, 43, 111, 154, 265, 684, 949, 1633, 4215, 5848, 10063, 25974, 36037, 62011, 160059, 222070, 382129, 986328, 1368457, 2354785, 6078027, 8432812, 14510839, 37454490, 51965329, 89419819, 230804967, 320224786
Offset: 1
Examples
a(5) = 13 = 2*5 + 3.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,1).
Programs
-
Mathematica
xx = ContinuedFraction[3/(1 + Sqrt[10]), 70]; Table[ Numerator[ FromContinuedFraction[ Take[xx, n]]], {n, 34}] (* Robert G. Wilson v, Apr 08 2004 *) LinearRecurrence[{0,0,6,0,0,1},{0,1,3,4,7,18,25},40] (* Harvey P. Dale, Nov 26 2021 *)
Formula
Partial quotients are [1 2 1 1 2 1...] indicating the operation below a term q. The numerator under q = n = q(n-1) + (n-2), a(1) = 1, a(2) = 2, a(3) = 3 and so on.
G.f.: x(1+3x+4x^2+x^3+x^5)/(1-6x^3-x^6). - Paul Barry, Apr 12 2010
Extensions
Corrected and extended by Robert G. Wilson v, Apr 08 2004
Comments