A093617 Numbers m such that there exists a number k less than m with k*m and m^2 having an equal number of divisors.
18, 50, 75, 90, 98, 108, 126, 144, 147, 150, 198, 234, 242, 245, 294, 300, 306, 324, 338, 342, 350, 363, 384, 400, 414, 450, 490, 500, 507, 522, 525, 540, 550, 558, 578, 588, 600, 605, 630, 640, 648, 650, 666, 720, 722, 726, 735, 738, 756, 774, 784, 825
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..300 from Vincenzo Librandi)
Programs
-
Mathematica
A093616[n_] := For[k = 1, True, k++, If[DivisorSigma[0, k*n] == DivisorSigma[0, n^2], Return[k]]]; Select[Range[1000], A093616[#] < # &] (* Jean-François Alcover, Aug 14 2014 *) f[p_, e_] := p^(e + Mod[e, 2]); q[n_] := Module[{fct = FactorInteger[n], d, m, k = 1}, d = Times @@ ((2*# + 1) & /@ fct[[;; , 2]]); s = Times @@ f @@@ fct; m = Sqrt[n^2/s]; While[k < m && DivisorSigma[0, k^2*s] != d, k++]; k < m]; Select[Range[1000], q] (* Amiram Eldar, Apr 15 2024 *)
-
PARI
is(n) = {my(f = factor(n), d = prod(i = 1, #f~, 2*f[i, 2] + 1), s = prod(i = 1, #f~, f[i, 1]^(f[i, 2] + f[i, 2]%2)), m = sqrtint(n^2/s), k = 1); while(k < m && numdiv(k^2 * s) != d, k++); k < m;} \\ Amiram Eldar, Apr 15 2024
Formula
A093616(a(n)) < n.
Comments