cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093638 G.f. satisfies: A(x) = Product_{n>=0} 1/(1-a(n)*x^(n+1))^2 = Sum_{n>=0} a(n)*x^n.

Original entry on oeis.org

1, 2, 7, 26, 109, 466, 2142, 9870, 47438, 228750, 1133373, 5618252, 28431660, 143809690, 738803296, 3794224624, 19718366257, 102416655624, 537315418006, 2816334685644, 14883569577907, 78603101910486, 417974689553235, 2220832056696030, 11871111721797874
Offset: 0

Views

Author

Paul D. Hanna, Apr 07 2004

Keywords

Comments

Equals the self-convolution of A093639.

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 26*x^3 + 109*x^4 + 466*x^5 + 2142*x^6 +...
where
A(x) = 1/((1-x)*(1-2*x^2)*(1-7*x^3)*(1-26*x^4)*(1-109*x^4)*(1-466*x^4)*...)^2.
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(prod(i=0,n-1,1/(1-a(i)*x^(i+1))^2)+x*O(x^n),n)
    
  • PARI
    a(n)=local(A=1+x); for(i=1, n, A=exp(2*sum(m=1, n, 1/m*sum(k=1, n, polcoeff(A+O(x^k), k-1)^m*x^(m*k)) +x*O(x^n)))); polcoeff(A, n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 13 2013

Formula

G.f. satisfies: A(x) = exp( 2*Sum_{n>=1} Sum_{k>=1} a(k)^n * (x^k)^n /n ) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Feb 13 2013