cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093642 Numbers not containing all divisors in their binary representation.

Original entry on oeis.org

9, 15, 18, 21, 25, 27, 30, 33, 35, 36, 39, 42, 45, 49, 50, 51, 54, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 81, 84, 85, 87, 90, 91, 93, 95, 98, 99, 100, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 121, 123, 125, 126, 129, 130, 132, 133, 135, 138, 140, 141
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2004

Keywords

Examples

			55 is not a member, as the binary representations of 5 ("101") and 11 ("1011") both appear in the binary representation of 55 ("110111").
		

Crossrefs

Complement of A123345.
Subsequence of A105441. - Reinhard Zumkeller, Apr 09 2005

Programs

  • Haskell
    import Data.List (unfoldr, isInfixOf)
    a093642 n = a093642_list !! (n-1)
    a093642_list = filter
      (\x -> not $ all (`isInfixOf` b x) $ map b $ a027750_row x) [1..] where
      b = unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)
    -- Reinhard Zumkeller, Oct 27 2012
    
  • Mathematica
    q[n_] := !AllTrue[Divisors[n], StringContainsQ[IntegerString[n, 2], IntegerString[#, 2]] &]; Select[Range[150], q] (* Amiram Eldar, Jun 05 2022 *)
  • Python
    from sympy import divisors
    def ok(n):
        b = bin(n)[2:]
        return not all(bin(d)[2:] in b for d in divisors(n, generator=True))
    print([k for k in range(119) if ok(k)]) # Michael S. Branicky, Jun 05 2022

Formula

A093640(a(n)) < A000005(a(n)).