cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A093690 Primes p that divide A007406(k), the numerator of the k-th generalized harmonic number H(k,2) = Sum 1/i^2 for i=1..k, for some k < (p-1)/2.

Original entry on oeis.org

37, 41, 43, 59, 97, 107, 127, 137, 149, 157, 163, 167, 181, 211, 241, 269, 307, 311, 373, 383, 419, 421, 433, 457, 467, 479, 487, 491, 499, 547, 563, 569, 571, 577, 601, 617, 619, 643, 653, 659, 677, 709, 727, 739, 787, 797, 811, 821, 859, 863, 883, 911, 929
Offset: 1

Views

Author

T. D. Noe, Apr 09 2004

Keywords

Comments

Because these primes are analogous to the irregular primes A000928 that divide the numerators of Bernoulli numbers, they might be called H2-irregular primes. Also see A092194. The density of these primes is about 0.4 - close to the density of irregular primes.

Crossrefs

Cf. A092194 (primes p that divide A001008(k) for some k < p-1), A093689 (least k such that prime(n) divides A007406(k)).

Programs

  • Mathematica
    nn=1000; t=Numerator[HarmonicNumber[Range[nn], 2]]; lst = {}; Do[p=Prime[n]; i=1; While[i<(p-1)/2 && Mod[t[[i]], p]>0, i++ ]; If[i<(p-1)/2, AppendTo[lst, p]], {n, 3, PrimePi[nn]}]; lst
Showing 1-1 of 1 results.