cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093805 Numbers n with property that sum of digits is prime and number of prime digits is prime.

Original entry on oeis.org

23, 25, 32, 52, 122, 133, 137, 155, 157, 173, 175, 203, 205, 212, 221, 223, 227, 229, 230, 232, 236, 238, 245, 247, 250, 254, 256, 263, 265, 272, 274, 278, 283, 287, 292, 302, 313, 317, 320, 322, 326, 328, 331, 335, 337, 353, 355, 359, 362, 371, 373, 377
Offset: 1

Views

Author

Jani Melik, May 19 2004

Keywords

Examples

			a(1)=23, sum of digits 5 is prime, number of prime digits {2,3} 2 is prime,
a(5)=122, sum of digits 5 is prime, number of prime digits {2,2} 2 is prime,
a(10)=173, sum of digits 11 is prime, number of prime digits {3,7} is prime, ...
		

Programs

  • Maple
    # Return list of digits stev_sez:=proc(n) local i, tren, st, ans,anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: # Return number of prime digits ts_stpf:=proc(n) local i, stpf, ans, ans1; ans:=stev_sez(n): ans1:=[ ]: stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # stevilo prastevilskih stevk ans1:=[ op(ans1), op(i,ans) ]: # prastevilske stevke fi od; RETURN(stpf) end: # Return sum of digits ts_vsota_stevk:=proc(n) local i, stpf, ans, ans1; ans:=stev_sez(n): ans1:=[ ]: stpf:=0: for i from 1 to nops(ans) do stpf:=stpf+op(i,ans); od; RETURN(stpf) end: ts_pras_vsota_pra_stevk:=proc(n) local i, ans; ans:=[ ]: for i from 1 to n do if ( isprime(ts_vsota_stevk(i)) = 'true' and isprime(ts_stpf(i))='true') then ans:=[ op(ans), i ]: fi od; RETURN(ans) end: ts_pras_vsota_pra_stevk(2000);
  • Mathematica
    sdpQ[n_]:=Module[{idn=IntegerDigits[n]},And@@PrimeQ[{Total[idn], Count[ idn,?PrimeQ]}]]; Select[Range[400],sdpQ] (* _Harvey P. Dale, Oct 20 2013 *)