cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093827 Decimal expansion of Silverman's constant.

Original entry on oeis.org

1, 7, 8, 6, 5, 7, 6, 4, 5, 9, 3, 6, 5, 9, 2, 2, 4, 6, 3, 4, 5, 8, 5, 9, 0, 4, 7, 5, 5, 4, 1, 3, 1, 5, 7, 5, 0, 3, 1, 2, 6, 2, 1, 9, 0, 2, 3, 8, 4, 2, 4, 3, 2, 9, 4, 9, 0, 1, 0, 7, 2, 4, 9, 6, 2, 1, 4, 2, 4, 5, 2, 7, 9, 1, 3, 4, 7, 8, 6, 2, 2, 3, 7, 7, 3, 2, 6, 9, 2, 4, 3, 9, 0, 3, 2, 8, 0, 5, 6, 8, 7, 6, 9, 0, 2
Offset: 1

Views

Author

Eric W. Weisstein, Apr 16 2004

Keywords

Comments

Named after Robert D. Silverman. - Amiram Eldar, Aug 20 2020

Examples

			1.786576459365922463458590475541315750312621902384243294901...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 161.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 182.
  • Robert D. Silverman, A Peculiar Sum, USENET sci.math.research newsgroup posting, Mar 27 1996.

Crossrefs

Programs

  • Maple
    read("transforms") ; Digits := 140 ; kmax := 450 ; tmax := kmax-10 ; 1+add(1/(p^(2*k)-p^(k-1)),k=1..kmax) : xt := subs(p=1/x,%) : xt := taylor(xt,x=0,tmax) ; L := [] ; for n from 1 to tmax-1 do L := [op(L),coeftayl(xt,x=0,n)]; end do: Le := EULERi(L) ; x := 1.0 ; for i from 2 to nops(Le) do x := x*Zeta(i)^op(i,Le) ; x := evalf(x) ; print(x) ; end do: # R. J. Mathar, Jul 28 2010
  • Mathematica
    Sum[1/(EulerPhi[n]DivisorSigma[1, n]), {n, Infinity}]
    $MaxExtraPrecision = 500; m = 500; f[p_] := 1 + Sum[1/(p^(2*k) - p^(k - 1)), {k, 1, 2*m}]; c = Rest@CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]*Range[m]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n])/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Aug 20 2020 *)

Formula

From Amiram Eldar, Aug 20 2020: (Start)
Equals Sum_{k>=1} 1/(phi(k)*sigma(k)) = Sum_{k>=1} 1/A062354(k).
Equals Product_{p prime} (1 + Sum_{k>=1} 1/(p^(2*k) - p^(k-1))). (End)

Extensions

37 more digits from R. J. Mathar, Jul 28 2010
More terms from Vaclav Kotesovec, Jun 13 2021