A093832 Values of r such that N(r)/r^2 > Pi, where N(r) is the number of integer lattice points (x,y) inside or on a circle of radius r.
1, 2, 3, 5, 10, 15, 20, 35, 51, 52, 85, 100, 230, 247, 370, 425, 489, 725, 730, 1073, 1310, 1865, 1997, 2480, 2831, 3072, 3424, 3750, 3861, 3921, 4025, 4339, 4771, 4885, 5559, 5949, 6203, 6411, 7045, 7084, 7410, 7605, 8931, 9308, 9435, 9646, 10829, 10930
Offset: 1
Keywords
Links
- David Wasserman, Table of n, a(n) for n = 1..160
- Eric Weisstein's World of Mathematics, Gauss's Circle Problem.
Programs
-
PARI
A000328(n) = local(x, y, c, nn); c = 0; x = 0; nn = n*n; y = n; while (x < y, c += x; y--; x = sqrtint(nn - y*y)); 4*(n - y) + 8*c + (2*y + 1)^2; for (n = 1, 100000, if (A000328(n) > Pi*n*n, print(n))); \\ David Wasserman, Dec 05 2006
Extensions
Corrected and extended by David Wasserman, Dec 05 2006
Name corrected by Luis Mendo, Sep 24 2023