A093836 Numerator of A000328(n)/n^2, where A000328(n) is the number of lattice points (x,y) with x^2 + y^2 <= n^2.
5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 49, 529, 613, 709, 797, 53, 1009, 1129, 1257, 1373, 1517, 1653, 1793, 1961, 2121, 763, 2453, 2629, 2821, 3001, 3209, 3409, 3625, 3853, 1351, 4293, 4513, 4777, 201, 5261, 5525, 5789, 6077, 6361, 6625
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Gauss's Circle Problem
Programs
-
Maple
N:= 100: # to get a(1) to a(N) B:= Array(1..N); for i from 0 to N do for j from i while i^2 + j^2 <= N^2 do v:= ceil(sqrt(i^2+j^2)); if [i,j] = [0,0] then m:= 1; v:= 1 elif i=0 or i=j then m:= 4 else m:= 8 fi; B[v]:= B[v]+m; od od: A000328:= ListTools:-PartialSums(convert(B,list)): seq(numer(A000328[n]/n^2),n=1..N); # Robert Israel, May 28 2015
Extensions
Definition edited by Robert Israel, May 28 2015
Comments