A093849 Row sums of triangle A093846.
9, 153, 2097, 26496, 319995, 3749994, 42999985, 484999992, 5399999991, 59499999990, 649999999935, 7049999999988, 75999999999924, 814999999999941, 8699999999999985, 92499999999999984, 979999999999999902
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..990
Crossrefs
Cf. A093846.
Programs
-
Magma
[n*(2*10^(n-1) -2 +(n+1)*Floor(9*10^(n-1)/n))/2: n in [1..20]]; // G. C. Greubel, Mar 22 2019
-
Mathematica
Table[n*(2*10^(n-1) -2 +(n+1)*Floor[9*10^(n-1)/n])/2, {n, 1, 20}] (* G. C. Greubel, Mar 22 2019 *)
-
PARI
{a(n) = n*(2*10^(n-1) -2 +(n+1)*floor(9*10^(n-1)/n))/2}; \\ G. C. Greubel, Mar 22 2019
-
Sage
[n*(2*10^(n-1) -2 +(n+1)*floor(9*10^(n-1)/n))/2 for n in (1..20)] # G. C. Greubel, Mar 22 2019
Formula
a(n) = n*(2*10^(n-1) - 2 + (n+1)*floor(9*10^(n-1)/n))/2.
Extensions
Edited and extended by David Wasserman, Mar 26 2007