A093850 Triangle T(n,k) = 10^(n-1) -1 + k*floor(9*10^(n-1)/(n+1)), with 1 <= r <= n, read by rows.
4, 39, 69, 324, 549, 774, 2799, 4599, 6399, 8199, 24999, 39999, 54999, 69999, 84999, 228570, 357141, 485712, 614283, 742854, 871425, 2124999, 3249999, 4374999, 5499999, 6624999, 7749999, 8874999, 19999999, 29999999, 39999999, 49999999, 59999999, 69999999, 79999999, 89999999
Offset: 1
Examples
Triangle begins with: 4; 39, 69; 324, 549, 774; 2799, 4599, 6399, 8199; 24999, 39999, 54999, 69999, 84999; ....
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Magma
[[10^(n-1) -1 +k*Floor(9*10^(n-1)/(n+1)): k in [1..n]]: n in [1..8]]; // G. C. Greubel, Mar 21 2019
-
Maple
A093850 := proc(n,r) 10^(n-1)-1+r*floor(9*10^(n-1)/(n+1)) ; end proc: seq(seq(A093850(n,r),r=1..n),n=1..14) ; # R. J. Mathar, Sep 28 2011
-
Mathematica
Table[# -1 +r*Floor[9*#/(n+1)] &[10^(n-1)], {n, 8}, {r, n}]//Flatten (* Michael De Vlieger, Jul 18 2016 *)
-
PARI
{T(n,k) = 10^(n-1) -1 +k*floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Mar 21 2019
-
Sage
[[10^(n-1) -1 +k*floor(9*10^(n-1)/(n+1)) for k in (1..n)] for n in (1..8)] # G. C. Greubel, Mar 21 2019
Extensions
Second comment clarified by Michael De Vlieger, Jul 18 2016
Edited by G. C. Greubel, Mar 21 2019
Comments