A093851 a(n) = A002283(n-1) + floor(A052268(n)/(1+n)).
4, 39, 324, 2799, 24999, 228570, 2124999, 19999999, 189999999, 1818181817, 17499999999, 169230769229, 1642857142856, 15999999999999, 156249999999999, 1529411764705881, 14999999999999999, 147368421052631577, 1449999999999999999, 14285714285714285713
Offset: 1
Examples
The triangle starts in row n=1 as 4 9 # -1, -1+5, -1+2*5 39 69 99 # 9,9+30,9+2*30 324 549 774 999 # 99, 99+225, 99+2*225, 99+3*225 2799 4599 6399 8199 9999 # 999, 999+1800, 999+2*1800,.. ... The sequence contains the first column.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..995
Programs
-
Magma
[10^(n-1) -1 +Floor(9*10^(n-1)/(n+1)): n in [1..20]]; // G. C. Greubel, Apr 02 2019
-
Maple
A093851 := proc(n) 10^(n-1)-1+floor(9*10^(n-1)/(n+1)) ; end proc: seq(A093851(n),n=1..20) ; # R. J. Mathar, Oct 14 2010
-
Mathematica
Table[10^(n-1) -1 +Floor[9*10^(n-1)/(n+1)], {n, 1, 20}] (* G. C. Greubel, Apr 02 2019 *)
-
PARI
{a(n) = 10^(n-1) -1 +floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Apr 02 2019
-
Sage
[10^(n-1) -1 +floor(9*10^(n-1)/(n+1)) for n in (1..20)] # G. C. Greubel, Apr 02 2019
Formula
a(n) = 10^(n-1) -1 + floor(9*10^(n-1)/(n+1)). - G. C. Greubel, Apr 02 2019
Extensions
More terms from R. J. Mathar, Oct 14 2010
Comments