cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093863 Unitary sigma-unitary phi super perfect numbers: USUP(USUP(n))= n/k for some integer k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 34, 36, 40, 48, 68, 72, 80, 136, 144, 256, 257, 272, 514, 768, 1028, 1280, 2056, 2304, 2808, 4112, 4320, 4352, 20280, 65536, 65537, 65792, 88704, 131074, 196416, 196608, 262148, 327680, 524296, 589824, 998400
Offset: 1

Views

Author

Yasutoshi Kohmoto, May 11 2004

Keywords

Comments

USUP(.)= A109712(.). Where k values are 1, they define fixed points of the function USUP(USUP(n)). k values larger than 1 exist, for example USUP(USUP(4320))= 4320/2.
k = 2 for 4320, 20280, 88704, 196416, 998400, ... - Amiram Eldar, Mar 01 2019

Crossrefs

Programs

  • Maple
    for n from 1 to 20000 do if n mod A109712(A109712(n)) = 0 then printf("%d,",n); end if; end do:
  • Mathematica
    usigma[1]=1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); A047994[n_] := Times @@ (Power @@@ FactorInteger[n] - 1); A006519[n_] := 2^IntegerExponent[ n, 2]; usup[1] = 1; usup[n_ /; IntegerQ[Log[2, n]]] := n+1; usup[n_] := usigma[ A006519[n] ]*A047994[ n/A006519[n] ];  aQ[n_]:=Divisible[n,usup[usup[n]]]; Select[Range[10000], aQ] (* Amiram Eldar, Mar 01 2019 after Jean-François Alcover at A109712 *)

Extensions

More terms from Amiram Eldar, Mar 01 2019