A093893 Numbers n such that every sum of two or more divisors is composite.
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 113, 121, 127, 131, 133, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 183, 191, 193, 197, 199, 211, 213, 217, 223, 227, 229, 233
Offset: 1
Keywords
Programs
-
Mathematica
For[a:=3, a<=500, s =Divisors[a];n := 1;d := False; While[(n<=2^Length[s])\[And]( ["not" character]d), If[Length[NthSubset[n, s]]>=2, If[ !PrimeQ[Plus@@NthSubset[n, s]], n++, d:= True], n++ ]]; If[ ["not" character]d, Print[a]];a+=2]; (Kalman) fQ[n_] := Union@ PrimeQ[Plus @@@ Subsets[ Divisors@n, {2, Infinity}]] == {False}; Select[ Range[3, 235, 2], fQ@# &] (* Robert G. Wilson v, May 25 2009 *)
Extensions
More terms from Adam M. Kalman (mocha(AT)clarityconnect.com), Nov 11 2004
a(1)=1 prepended by Max Alekseyev, Mar 31 2015
Comments